Non-inductive Plasma Initiation and Plasma Current Ramp-up on the TST-2 Spherical Tokamak

Y. Takase, A. Ejiri, H. Kakuda, T. Oosako, T. Shinya, T. Wakatsuki, O. Watanabe3, T. Ambo, H. Furui, T. Hashimoto, J. Hiratsuka, H. Kasahara1, K. Kato, R. Kumazawa1, C. Moeller2, T. Mutoh1, A. Nakanishi, Y. Nagashima3, K. Saito1, T. Sakamoto, T. Seki1, M. Sonehara, R. Shino, H. Togashi, T. Yamaguchi

The University of Tokyo, Kashiwa 277-8561 Japan

1) National Institute for Fusion Science, Toki 509-5292 Japan

2) General Atomics, San Diego, CA 92186 U.S.A.

3) Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580 Japan

24th IAEA Fusion Energy Conference
8-13 October 2012
San Diego, CA, USA
Motivation and Goal of Research

- Economically competitive tokamak reactor may be realized at low aspect ratio by eliminating the central solenoid (CS)

• Formation of Advanced Tokamak Plasma without CS was Achieved on JT-60U

Start-up and initial ramp-up
Noninductive ramp-up (LH)
Transition to self-driven phase

• Is I_p ramp-up by LHW possible in ST? → Demonstrate on TST-2
LHCD Experiment on TST-2

• LHCD experiments have started on TST-2.
 – The scenario is to ramp-up I_p from a very low current (~ 1 kA), very low density ($< 10^{18}$ m$^{-3}$) ST plasma.
 – Up to 400 kW of power at 200 MHz is available. 8.2 GHz ECH (20 kW) installed to enable high B_t (0.3 T) operation required for LHCD.
 – Experiments using a combline antenna (FW launch) was completed, and initial experiments using a dielectric-loaded waveguide array ("grill") antenna (SW launch) have begun.

• Experimental results presented in this poster:
 – Efficiency of I_p ramp-up (FW launch vs. SW launch).
 – X-ray measurements.
 – Polarization-resolved wave measurements by RF magnetic probes.

• Improved antenna for direct SW excitation is being tested.
 – Capacitively coupled traveling wave antenna.
Cold Plasma Dispersion Relation

CMA diagram

- Ion cyclotron resonance
- Electron cyclotron resonance
- Lower hybrid resonance
- O-mode cutoff
- No propagating wave
- HHFW

slow wave (SW) or LH wave

fast wave (FW)

\(R = 0.1\)
\(R = 0.6\)

\(\frac{\Omega_e}{\omega}\) vs. \(\frac{\omega_p^2 + \omega_i^2}{\omega^2}\)

\(N_x^2\) vs. \(R\) and \(n_e\)

slow wave

fast wave
TST-2 Spherical Tokamak and Combline Traveling Wave Antenna

- $R = 0.38$ m, $a = 0.25$ m ($A = 1.5$)
- $B_t = 0.3$ T, $I_p = 0.14$ MA

Combline antenna
(11 elements)

- excites traveling FW
- I_p driven by SW (LHW)
 (requires mode conversion)
I_p Ramp-up to 15 kA Achieved by 200 MHz RF Power
(Combline Antenna)
Hard X-ray Spectra for Co/Ctr Current Drive Directions (Combline Antenna)

- Photon flux is an order of magnitude higher in the co direction.
- Photon temperature is higher in the co direction (60 keV vs. 40 keV).
- Consistent with acceleration of electrons by a uni-directional RF wave.
Frequency Spectra Measured by RF Magnetic Probes (Combline Antenna)

- LHW excited by PDI?
 - Pump wave (f = 200 MHz ± 1 kHz) has FW polarization (|B_t| > |B_p|).
 - PDI sidebands have SW (LHW) polarization (|B_t| < |B_p|).
- Pump wave weakens when sidebands intensify.
Dielectric-Loaded Waveguide Array Antenna (Grill Antenna)

- excites traveling SW (LHW)
Comparison of Driven I_p
(Combline Antenna vs. Grill Antenna)

For similar B_v and P_{RF}, driven I_p is slightly lower for grill antenna.

 Due to lower directivity of the waves excited by the grill antenna?
RF Magnetic Probe Array for k Measurement (Grill Antenna)

- Array can be rotated about its axis
 - to distinguish RF magnetic field polarization
 - \tilde{B}_t (toroidal) and \tilde{B}_p (poloidal)
 - to measure wavevector components
 - k_t (toroidal) and k_p (poloidal)
Measurement of k_t and k_p (Grill Antenna)

- Wavevector components are derived from phase differences of probes a, b, c, d relative to probe e.

SW (LHW) polarization $\tilde{B}_p (\theta = 0^{\circ})$
Radial Profiles of Pump Wave k_t and k_p (Grill Antenna)

- Dominant wavevector components excited by the grill antenna (for 90° phasing) are $k_t \approx 50 \text{ m}^{-1}$ and $k_p \approx 10 \text{ m}^{-1}$.
 - Measured $k_t \lesssim 10 \text{ m}^{-1}$ is much smaller (higher k_t absorbed?)
Measurement of k_R (Grill Antenna)

- Radial component of wavevector can be derived from radial profile of phase measured by probes relative to the injected wave.

![Graph showing phase vs. R](image)

- SW: ~ 35 m$^{-1}$
- FW: ~ 10 m$^{-1}$
Typical Values of Wavevector Components (Grill Antenna)

<table>
<thead>
<tr>
<th></th>
<th>\tilde{B}_p (SW component)</th>
<th>\tilde{B}_t (FW component)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>k_t</td>
<td>\equiv</td>
</tr>
<tr>
<td>$</td>
<td>k_p</td>
<td>$</td>
</tr>
<tr>
<td>$</td>
<td>k_R</td>
<td>$</td>
</tr>
<tr>
<td>$</td>
<td>k_\bot</td>
<td>$</td>
</tr>
</tbody>
</table>

$k_\parallel = 10 \text{ m}^{-1}$ corresponds to $n_\parallel = 2.4$
New Traveling Wave LHW Antenna

- Consists of 13 mutually coupled vertical bars arrayed in the toroidal direction.
- Electric field polarized in the toroidal direction (SW polarization).
- Power is fed to the outermost element. Successive elements are excited through mutual capacitance.
- Antenna is undergoing low-power testing.
Conclusions (1)

• ST plasma initiation and I_p ramp-up by waves in the LH frequency range were demonstrated on TST-2.
 – Combline antenna (FW launch) and dielectric-loaded waveguide array (“grill”) antenna (SW launch) drive similar I_p.
 – Slightly lower I_p for the grill antenna may be a result of lower directivity of the excited wave.

• Combline antenna results:
 – X-ray measurements indicate acceleration of electrons by a unidirectional wave.
 – Combline antenna excites the FW, but SW is excited by parametric decay.
Conclusions (2)

• Grill antenna results:
 – Wavevector components for FW and SW were measured by an array of RF magnetic probes.
 – Results are consistent with expectations based on dispersion relations for FW and SW.
 – Lower observed $k_t (\equiv k_{||})$ compared to k_t excited by the antenna may indicate absorption of higher $k_{||}$ components.

• A new type of traveling SW antenna (capacitively coupled array) is being tested at low power.
 – Scheduled to be tested on TST-2 in early 2013.
Acknowledgments

• This work is supported by

 – Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (S) 21226021, (A) 21246137, (B) 23360409.

 – National Institute for Fusion Science Collaboration Research Program NIFS12KNWR001.

 – Japan-US Cooperation in Fusion Research and Development.