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Fast ignition with external B-field 

 A critical problem of the fast ignition scheme is a large divergence 

of laser-accelerated relativistic electron beam (REB).  

 The diverging REB can be guided to a fuel core by application of 

external B-field. 

 Magnetized Fast Ignition (MFI) has been proposed to increase 

heating efficiency owing to the guidance of the REB with the B-

field. 

 

Heating of a dense plasma with the assistance of external B-field 

 Laser-driven capacitor coil scheme generates kilo-tesla B-field. 

 Magneto-Hydrodynamics (MHD) of a laser-produced plasma must 

be considered for fuel compression of MFI. 

 Li-like and He-like Cu ions were generated in a heated Cu-doped 

plasma only in the case that external B-field was applied. 

 3 keV of a heated plasma temperature was inferred from spectral 

shape of x-rays emitted from Cu dopants. 

Summary 
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Nano-second TW laser beams compress a fuel, and 

pico-second PW laser beams heat a dense fuel core. 

Fast ignition 

ILE, Osaka 

3 



nb 

(cm-3) 

2.1ps 2.1ps 

Bz,ext = 0 Bz,ext = 2 kT 

Bz 

Fuel 

#Simulation by Prof. Honrubia. 
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Diverging REB can be guided to a fuel core 

by application of kT external B-field. ILE, Osaka 

MFI: Magnetized Fast Ignition 

Bz 

Gyromotion by compressed B-field 

4 



Cone 

Coil 

 

Kilo-tesla B-field generated by a capacitor-coil target 

is applied externally before the fuel compression. 

Compression 
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MFI: Magnetized Fast Ignition 

S. Fujioka et al., Phys. Plasma (2016). 
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GEKKO-XII (kJ/ns) is used for fuel compression  

and B-field generation. LFEX (kJ/ps) is used for fuel heating. ILE, Osaka 

MFI: Magnetized Fast Ignition 
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B 

 

Thermal conductivity becomes anisotropic in strong B-field. 

Thermal electron motion across B-field lines is reduced. 

kperp 

kpara 

kpara = kw/o B 

 

kperp = k w/o B/(1+(ωceτe)
2) 

 
kw/o B : conductivity (w/o B) 

ωce  : elec. gyrofrequency 

τe   : elec. collisional time 

 

Te = 100 eV, ne = 9 x 1021 cm-3 

ωceτe ~ 1 for 1 kT 
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アブレーションプラズマの１次元プロファイル 

laser 

 

External B-field changes flying velocity of 

a laser-driven foil due to anisotropic heat conduction. ILE, Osaka 
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K. Matsuo et al., submitted to Phys. Rev. Lett.. 
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Compression is significantly affected by external 

B-field due to anisotropic thermal conduction. 
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Initial plasma profile 

Density w/o Bext 

Kilo-tesla B-field deforms significantly a core shape. 

Density & Field line  

with Bext = 1 kT 

Mirror ratio is ~3 due to fast 

diffusion of B-field in a shock 

compressed region.  
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Magnetized Fast Ignition (MFI) 
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Cu-doped solid beads were used 

for visualization of heated region and temperature. ILE, Osaka 

Heated with guided REB 

Target layout 

The capacitor-coil target 

was driven by 3 beams, 

and a bead was 

compressed by 6 beams. 

Cu-doped small beads 

Cu-doped oleic-acid was 

used to produce Cu-

doped small beads. 

X-ray radiograph 

Density of a 

compressed beads 

was measured with x-

ray radiography. 
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~8 g/cm3 of plasma density was obtained 

at the heating laser pulse injection timing.  ILE, Osaka 
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2D density map 

Heated with guided REB 
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X-ray radiograph 

Density of a compressed 

beads was measured with x-

ray radiography. 

Density profile 

Density profile was derived 

from x-ray shadow image 

with inversie Abel inversion. 
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外部磁場を利用したプラズマ加熱 

Intensity ratio  

betwee w/B and w/o B 

 

Ka energy of Cu dopants shifts to out-of-band of  

the crystal imager due to ionization of Cu atoms. ILE, Osaka 
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Spectrum emitted from Li- and He-like Cu ions 

Indicates 3 keV of temperature of the heated region. ILE, Osaka 

w/ B 

Heated with guided REB 

Hea Li-like 

14 
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 A critical problem of the fast ignition scheme is a large divergence 

of laser-accelerated relativistic electron beam (REB).  
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field. 
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