High fidelity simulations of fast ion power flux driven by 3D field perturbations on ITER

R J Akers¹, S Äkäslompolo², B Colling¹, J Hess¹, Y Liu¹, S D Pinches³, K Särkimäki², M Singh³, A Turner¹, J Varje²

¹CCFE, Culham Science Centre, Abingdon, OX14 3dB, UK ²Department of Applied Physics, Aalto University, FI-0076 AALTO, Finland ³ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul lez Durance Cedex, France.

E-mail contact of main author: rob.akers@ukaea.uk

IAEA Fusion Energy Conference 2016, TH/4-1

Code development motivated by problem posed FEC2012

T Oikawa et al., IAEA FEC 2012, paper ITR/P1-35.

0.2-0.3MW/m² (vacuum ECC field @90kAt) (0.1MW/m² expected from thermal/radiative load)

Need:

- Accurate plasma response field
- High statistics
- Higher fidelity first wall model
- Gyro-motion

We have developed a new Monte Carlo code to solve this challenge: LOCUST-gpu (the Lorentz Orbit Code for Use in Stellarators and Tokamaks)

LOCUST-gpu solves the following equations using GPUs:

Time/spatial scale	Value (ITER 15MA H-mode, 1MeV D injection)
Gyro frequency	3.8x10 ⁷ Hz
Field structure scale length	>2cm (poloidal plane)
Slowing down time	~1.5s (core born)

Choice of 9 tracking integrators.

Here we use Boris, 2ns time-step.

"Why is Boris Algorithm So Good?" Hong Qin et. al., PPPL-4872, April 2013.

LOCUST-gpu deploys a detailed tetrahederal mesh

ECC field map built from MARS-F field components

- Separate radial splines for s<1 and s>1.
- Large values of M0=240, M1=-109 & M2=+109 needed.
- LOCUST-gpu uses bi-cubic spline of ψ for 2D field and either tri-cubic spline or summation over toroidal Fourier harmonics using bi-cubic splines of the Real and Imaginary components of the field vectors for a given n.

$$R(s,\chi) = \mathbf{RF}(s,1) + 2Re[\sum_{m=2}^{\mathbf{M0}} \mathbf{RF}(s,m)e^{i(m-1)\chi}]$$
$$Z(s,\chi) = \mathbf{ZF}(s,1) + 2Re[\sum_{m=2}^{\mathbf{M0}} \mathbf{ZF}(s,m)e^{i(m-1)\chi}]$$

Chosen grid res: 0.5cm x 0.5cm

LOCUST-gpu can efficiently follow field lines as well as orbits...

Colour rendered Poincare plots of the ITER homoclinic tangle

ITER 15MA baseline H-mode with 45kAt n=3 ECC (vacuum, incl. n=6 sideband)

ITER 15MA baseline H-mode with 45kAt n=3 ECC (incl. n=6 sideband & plasma screening)

4482.8

2988.5

1494.2

0.000e+00

[86°,0°,34°] U,M,L phase settings generate close to maximum stochasticity for a given ECC drive current

T.E.Evans et al., IAEA FEC2012 paper ITR P1-25

- MARS-F runs done for each coil set independently, separated into toroidal harmonics.
- Scan of field line leak rate vs. upper & lower coil set phase offset looks very similar to that of vacuum island overlap width.

In 24 hours, the 3 K80 nodes at CCFE can integrate up a distance (with 2cm resolution, 1MeV D + 2D field) of: 5.4×10^{12} m

In 24 hours, the 3 K80 nodes at CCFE can integrate up a distance (with 2cm resolution, 1MeV D + 2D field) of: 5.4 x 10¹²m

In 24 hours, the 3 K80 nodes at CCFE can integrate up a distance (with 2cm resolution, 1MeV D + 2D field) of: 5.4 x 10¹²m

For a 10% statistical error... (very rough back of the envelope calculation):

100	markers per triangle	
400	triangles "painted" area per pipe	No.
12	pipes per cassette	
54	cassettes	
~1.0x10 ⁷ m/s	"average" velocity over slowing down	
~0.5s	Time to impact	
50kW	Power deposited to pipes (0.15% injec	ted)

In 24 hours, the 3 K80 nodes at CCFE can integrate up a distance (with 2cm resolution, 1MeV D + 2D field) of: 5.4 x 10¹²m

For a 10% statistical error... (very rough back of the envelope calculation):

100markers per triangle400triangles "painted" area per pipe12pipes per cassette54cassettes~1.0x107m/sion velocity~0.5sTime to impact50kWPower deposited to pipes (0.15% injected)

Pluto

Proxima Centauri

100 x 400 x 12 x 54 x 1.0x10⁷ x 0.5 / (0.05 / 33.0) = 8.6 x 10¹⁶m (~9 light years)

4.014 x 10¹⁶m

We are going to need some Monte Carlo "tricks".

Monte Carlo Enhancement methods

Tracking Stage 1

Stage 1: Track w/o PFC hit testing

- Reject markers born inside $\psi_n = \psi_c$ (use a low stats run to determine ψ_c and also maximum tracking time)
- Follow markers inside ψ_n = 1 until they cross the separatrix (when they do, cache them) or until they thermalize or reach t_{max}.
- Every n kernal calls, cache all the marker state parameters, keeping m copies.

Tracking Stage 2

Stage 2: Track with PFC hit testing

 "Split" markers that were either born outside the separatrix or were cached from stage 1 until they hit the wall, are thermalized or reach t_{max}.

Tracking Stage 3

Stepping back ~0.2-0.4ms sufficient for collisions to smear out markers and produce smooth maps.

Caveat: Must step far enough back in t to prevent problems with shadow areas. Power accounting maintained by normalizing newly collected power from siblings to their parent marker.

15MA baseline H-mode, 1 beam on-axis, 1 off-axis. (33MW D injection) n=3 ECC (including n=6 sideband)

ITER_D_33Y59M - v2.3

2D field:

- Losses are negligible for low density SOL.
- 0.26MW (0.8%) loss, mainly prompt to 1st wall and OVT for high density SOL.

I _c [kAt]	Plasma Response ?	n _{e(SOL)} High/ Low [MW]	1 st wall [MW]	Dome Umbrella [MW]	Inner Support legs [MW]	Outer PRP [MW]	Inner Cooling pipes [MW]	OVT [MW]	IVT [MW]		
0	-	L	0.0032± 0.0004	0.0062± 0.0006	0.00007± 0.00006	0.0004± 0.0001	0.000± 0.000	0.0081± 0.0004	0.00118± 0.00005	\Rightarrow	0.01MW (0.04%)
45	X	L	0.0038± 0.0008	0.216± 0.004	0.0085± 0.0007	0.0029± 0.0004	0.0227± 0.0013	0.296± 0.003	0.591± 0.004		
45	1	L	0.0036± 0.0005	0.078± 0.001	0.0032± 0.0004	0.0028± 0.0002	0.0069 ± 0.0004	0.0486 ± 0.0008	0.0206± 0.0006		
90	X	L	0.0076± 0.0011	0.962± 0.012	0.044± 0.002	0.0091± 0.0013	0.156± 0.004	1.251± 0.011	1.821± 0.016		
90	1	L	0.0077± 0.0006	0.262± 0.003	0.0197± 0.0007	0.0104± 0.0008	0.043± 0.001	0.239± 0.002	0.146± 0.002		
0	-	Н	0.109	0.0472± 0.0018	0.0002± 0.0001	0.0049± 0.0004	0.0001± 0.0001	0.108	0.0025± 0.0003	\Rightarrow	0.26MW (0.8%)
45	X	Н	0.111± 0.004	0.295± 0.004	0.0087± 0.0010	0.0116± 0.0009	0.0239± 0.0018	0.461± 0.006	0.573± 0.005		
45	√	Н	0.113± 0.003	0.171± 0.003	0.0029± 0.0003	0.0118± 0.0006	0.0067± 0.0005	0.180± 0.002	0.0211± 0.0007		
90	X	Н	0.128± 0.002	1.049± 0.006	0.0477± 0.0015	0.0151± 0.0005	0.151± 0.002	1.454± 0.008	1.808± 0.008		
90	1	Н	0.128± 0.004	0.357± 0.005	0.019± 0.001	0.0173± 0.0007	0.049± 0.001	0.414± 0.005	0.149± 0.002		

45kAt vacuum ECC field:

- Losses to dome umbrella increase to 0.2(L)-0.3(H)MW
- Losses to OVT increase by 0.3(L)-0.35(H)MW
- Losses to IVT increase by ~0.6MW (similar for both Low and High density SOL)
- 1st wall losses don't increase very much (prompt, poorly confined orbits in SOL)

I _c [kAt]	Plasma Response ?	n _{e(SOL)} High/ Low [MW]	1 st wall [MW]	Dome Umbrella [MW]	Inner Support legs [MW]	Outer PRP [MW]	Inner Cooling pipes [MW]	OVT [MW]	IVT [MW]		
0	-	L	0.0032± 0.0004	0.0062± 0.0006	0.00007± 0.00006	0.0004± 0.0001	0.000± 0.000	0.0081± 0.0004	0.00118± 0.00005		
45	X	L	0.0038± 0.0008	0.216	0.0085± 0.0007	0.0029± 0.0004	0.0227± 0.0013	0.296	0.591	\Rightarrow	1.11MW (3.4%)
45	1	L	0.0036± 0.0005	0.078± 0.001	0.0032± 0.0004	0.0028± 0.0002	0.0069± 0.0004	0.0486± 0.0008	0.0206± 0.0006		
90	X	L	0.0076± 0.0011	0.962± 0.012	0.044± 0.002	0.0091± 0.0013	0.156± 0.004	1.251± 0.011	1.821± 0.016		
90	\checkmark	L	0.0077± 0.0006	0.262± 0.003	0.0197± 0.0007	0.0104± 0.0008	0.043± 0.001	0.239± 0.002	0.146± 0.002		
0	-	Н	0.109	0.0472± 0.0018	0.0002± 0.0001	0.0049± 0.0004	0.0001± 0.0001	0.108± 0.002	0.0025± 0.0003		
45	X	Н	0.111	0.295	0.0087± 0.0010	0.0116± 0.0009	0.0239± 0.0018	0.461	0.573	\Rightarrow	1.47MW (4.5%)
45	1	Н	0.113	0.171± 0.003	0.0029± 0.0003	0.0118± 0.0006	0.0067± 0.0005	0.180± 0.002	0.0211± 0.0007		
90	X	Н	0.128	1.049± 0.006	0.0477± 0.0015	0.0151± 0.0005	0.151± 0.002	1.454± 0.008	1.808± 0.008		
90	1	Н	0.128	0.357± 0.005	0.019± 0.001	0.0173± 0.0007	0.049± 0.001	0.414± 0.005	0.149± 0.002		

45kAt ECC field incl. plasma screening (MARS-F):

- For low density SOL, losses reduce dramatically down to ~0.5%.
- High density SOL losses reduce by 2/3 to 1.5% (DU, OVT, IVT). Prompt loss to wall and OVT remain.
- Under dome cooling pipes power flux still negligible.

	I _c [kAt]	Plasma Response ?	n _{e(SOL)} High/ Low [MW]	1 st wall [MW]	Dome Umbrella [MW]	Inner Support legs [MW]	Outer PRP [MW]	Inner Cooling pipes [MW]	OVT [MW]	IVT [MW]		
	0	-	L	0.0032± 0.0004	0.0062± 0.0006	0.00007± 0.00006	0.0004± 0.0001	0.000± 0.000	0.0081± 0.0004	0.00118± 0.00005		
	45	X	L	0.0038 ± 0.0008	0.216± 0.004	0.0085± 0.0007	0.0029± 0.0004	0.0227	0.296± 0.003	0.591± 0.004	\Rightarrow	1.11MW (3.4%
	45	1	L	0.0036± 0.0005	0.078± 0.001	0.0032± 0.0004	0.0028± 0.0002	0.0069	0.0486± 0.0008	0.0206± 0.0006	\Rightarrow	0.15MW (0.5%
	90	X	L	0.0076± 0.0011	0.962± 0.012	0.044± 0.002	0.0091± 0.0013	0.156± 0.004	1.251± 0.011	1.821± 0.016		
	90	1	L	0.0077± 0.0006	0.262± 0.003	0.0197± 0.0007	0.0104± 0.0008	0.043± 0.001	0.239± 0.002	0.146± 0.002		
	0	-	Н	0.109± 0.003	0.0472± 0.0018	0.0002± 0.0001	0.0049± 0.0004	0.0001± 0.0001	0.108± 0.002	0.0025± 0.0003		
	45	X	Н	0.111	0.295	0.0087± 0.0010	0.0116± 0.0009	0.0239	0.461	0.573	\Rightarrow	1.47MW (4.5%)
	45	1	Н	0.113	0.171	0.0029± 0.0003	0.0118± 0.0006	0.0067	0.180	0.021		0.50MW (1.5%)
1	90	X	Н	0.128± 0.002	1.049± 0.006	0.0477± 0.0015	0.0151± 0.0005	0.151± 0.002	1.454± 0.008	1.808± 0.008	,	
	90	\checkmark	Н	0.128± 0.004	0.357± 0.005	0.019± 0.001	0.0173± 0.0007	0.049± 0.001	0.414± 0.005	0.149± 0.002		

90kAt vacuum ECC field:

- Losses increase dramatically compared with 45kAt (by >3MW for L and similar for H SOL)
- Losses are mainly to dome umbrella, OVT and IVT
- Divertor under-dome cooling pipes hit ~150kW (spread over an area of order 1m but not uniformly)

I _c [kAt]	Plasma Response ?	n _{e(SOL)} High/ Low [MW]	1 st wall [MW]	Dome Umbrella [MW]	Inner Support legs [MW]	Outer PRP [MW]	Inner Cooling pipes [MW]	OVT [MW]	IVT [MW]	
0	-	L	0.0032± 0.0004	0.0062± 0.0006	0.00007± 0.00006	0.0004± 0.0001	0.000± 0.000	0.0081± 0.0004	0.00118± 0.00005	
45	X	L	0.0038± 0.0008	0.216	0.0085± 0.0007	0.0029± 0.0004	0.0227± 0.0013	0.296	0.591	📫 1.11MW (3.4%)
45	√	L	0.0036 ± 0.0005	0.078± 0.001	0.0032± 0.0004	0.0028± 0.0002	0.0069 ± 0.0004	0.0486 ± 0.0008	0.0206± 0.0006	
90	X	L	0.0076± 0.0011	0.962	0.044± 0.002	0.0091± 0.0013	0.156	1.251	1.821	4.3MW (13%)
90	1	L	0.0077± 0.0006	0.262± 0.003	0.0197± 0.0007	0.0104± 0.0008	0.043± 0.001	0.239± 0.002	0.146± 0.002	
0	-	Н	0.109± 0.003	0.0472± 0.0018	0.0002± 0.0001	0.0049± 0.0004	0.0001± 0.0001	0.108± 0.002	0.0025± 0.0003	
45	X	Н	0.111± 0.004	0.295	0.0087± 0.0010	0.0116± 0.0009	0.0239± 0.0018	0.461	0.573	📫 1.47MW (4.5%)
45	1	Н	0.113± 0.003	0.171± 0.003	0.0029± 0.0003	0.0118± 0.0006	0.0067± 0.0005	0.180± 0.002	0.0211± 0.0007	
90	X	Н	0.128± 0.002	1.049	0.0477± 0.0015	0.0151± 0.0005	0.151	1.454	1.808	4.7MW (14%)
90	1	Н	0.128± 0.004	0.357± 0.005	0.019± 0.001	0.0173± 0.0007	0.049± 0.001	0.414± 0.005	0.149± 0.002	

90kAt ECC field incl. plasma screening (MARS-F):

- Sharp rise in Dome umbrella, OVT and IVT losses relative to 45kAt.
- Plasma response effective at reducing losses (by over ¾) (reduction to DU, OVT and IVT).
- Screening reduces losses to the under dome cooling pipes by factor 3.

I _c [kAt]	Plasma Response ?	n _{e(SOL)} High/ Low [MW]	1 st wall [MW]	Dome Umbrella [MW]	Inner Support legs [MW]	Outer PRP [MW]	Inner Cooling pipes [MW]	OVT [MW]	IVT [MW]		
0	-	L	0.0032± 0.0004	0.0062± 0.0006	0.00007± 0.00006	0.0004± 0.0001	0.000± 0.000	0.0081± 0.0004	0.00118± 0.00005		
45	X	L	0.0038 ± 0.0008	0.216± 0.004	0.0085± 0.0007	0.0029± 0.0004	0.0227± 0.0013	0.296± 0.003	0.591± 0.004		
45	1	L	0.0036± 0.0005	0.078	0.0032± 0.0004	0.0028± 0.0002	0.0069± 0.0004	0.049	0.021		
90	X	L	0.0076± 0.0011	0.962	0.044± 0.002	0.0091± 0.0013	0.156	1.251	1.821		4.3MW (13%)
90	\checkmark	L	0.0077± 0.0006	0.262	0.0197± 0.0007	0.0104± 0.0008	0.043	0.239	0.146	\Rightarrow	0.74MW (2.2%)
0	-	Н	0.109± 0.003	0.0472± 0.0018	0.0002± 0.0001	0.0049± 0.0004	0.0001± 0.0001	0.108± 0.002	0.0025± 0.0003		
45	X	Н	0.111± 0.004	0.295± 0.004	$\begin{array}{c} 0.0087 \pm \\ 0.0010 \end{array}$	0.0116± 0.0009	0.0239± 0.0018	0.461± 0.006	0.573± 0.005		
45	\checkmark	Н	0.113± 0.003	0.171	0.0029± 0.0003	0.0118± 0.0006	0.0067± 0.0005	0.180	0.021		
90	X	Н	0.128± 0.002	1.049	0.0477± 0.0015	0.0151± 0.0005	0.151	1.454	1.808	\Rightarrow	4.7MW (14%)
90	\checkmark	Н	0.128± 0.004	0.357	0.019± 0.001	0.0173± 0.0007	0.049	0.414	0.149	\Rightarrow	1.17MW (3.5%)

Results: Prompt losses from high density SOL

High density SOL: ~0.1MW of loss to first wall – power flux well below 2MW/m² Beryllium limit

Results: Cooling pipe assembly power loading (90kAt)

+ plasma screening

- Gaps between cassettes mean that the end most pipe and edge of each cassette dome take an increased load, by roughly a factor of two (gap~1 missing pipe).
- For vacuum field, flux to pipes broadly consistent with OFMC 0.2-0.3MW/m².
- With plasma screening, power flux to the end most pipe reduced from ~0.7MW/m² to ~0.2MW/m², close to the expected level for thermal/radiative load.

Summary – concluding remarks & future work

- To address an important engineering question, requiring the coupling of fast ion physics to a detailed model of the ITER divertor, we have developed the LOCUSTgpu code for ITER conditions.
- LOCUST can model the power flux to the ITER under-dome sub structure, which occupies a small wetted area (~1m²) but takes appreciable flux (~0.2MW/m²) even though the loss to the components is <1% of injected HNB power.
- We have improved the mapping of MARS-F data to cylindrical coordinates, and now deploy a fine resolution mesh to capture structure in the plasma response (0.5cm x 0.5cm in R,Z).
- Scans now need to be extended to more ITER scenarios (in particular, lower plasma current than the 15MA baseline H-mode) and more n's, phase settings etc.
- More field structure needs to be included (with low numerical divergence), in particular, the TF ripple field, TBMs and Fe inserts.

Thank you

