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	  Predic6ng	  and	  understanding	  frequency	  chirping	  in	  fusion	  experiments	  

1.  Spontaneous	  fast	  chirping	  phenomena	  is	  oaen	  observed	  in	  experiments	  with	  energe6c	  par6cles	  that	  
excite	  Alfvenic	  instabili6es.	  Above	  are	  examples	  in	  NSTX	  

2.  NSTX	  experiments	  frequently	  observes	  chirping,	  while	  chirping	  is	  rarely	  observed	  in	  DIII-‐D.	  Why?	  
3.  Here	  we	  use	  an	  expanded	  version	  of	  a	  theore6cal	  model,	  (first	  proposed	  by	  Lilley,	  Sharapov	  and	  

Breizman,	  (2009)	  )	  to	  see	  if	  a	  predic6ve	  theory	  can	  be	  employed	  to	  explain,	  when	  there	  is	  Alfvenic	  
instablity,	  whether	  chirping	  will	  or	  will	  not	  arise.	  

4.  The	  above	  figure	  on	  right,	  of	  NSTX	  data,	  shows	  that	  TAE	  modes	  can	  increase	  in	  intensity	  with	  6me,	  and	  
even	  produce	  rapid	  and	  large	  frequency	  shia	  chirping	  events.	  	  

5.  Here	  we	  show	  a	  numerical	  simula6on	  of	  this	  rapid	  chirping	  mechanism	  using	  a	  reduced	  simula6on	  
theory	  for	  TAE	  modes	  that	  replicates	  some	  of	  the	  important	  features	  of	  the	  chirping	  response.	  	  

	  	  	  	  	  	  	  	  	  	  

Introduc6on	  



Nonlinear	  dynamics	  of	  driven	  kine6c	  systems	  close	  to	  threshold	  
Star6ng	  point:	  kine%c	  equa%on	  plus	  wave	  equa%on	  
Assump6ons:	  
•  Perturba6ve	  procedure	  for	  expansion	  in	  mode	  amplitude	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
•  Trunca6on	  at	  third	  order	  due	  to	  closeness	  to	  marginal	  stability	  
•  First	  use	  characteris6c	  parameter	  to	  obtain	  problem	  iden6cal	  to	  bump-‐on-‐tail	  	  
Cubic	  equa%on:	  lowest-‐order	  nonlinear	  correc%on	  to	  the	  evolu%on	  of	  mode	  amplitude	  A:	  
(Hickernell,	  1982	  (fluids),	  	  	  	  	  	  	  	  	  	  Berk,	  Breizman	  and	  Pekker,	  PRL	  1996	  	  	  	  	  	  	  	  	  	  Lilley,	  Breizman	  and	  Sharapov,	  PRL	  2009)	  	  

	  
	  
	  Predicts	  a	  sufficient	  	  condi6on	  for	  onset	  of	  chirping:	  when	  no	  sta6onary	  response	  exists	  

1.  -‐	  First	  Amempt	  (use	  characteris6c	  parameters).	  
2.  -‐	  Dashed	  line	  separates	  blank	  and	  hatched	  regions.	  
3.  -‐	  In	  hatched	  region	  no	  steady	  solu6ons	  exist	  where	  	  Vlasov	  

simula6ons	  have	  always	  produced	  chirping.	  
	  	  In	  -‐	  In	  blank	  region	  there	  always	  is	  a	  steady	  solu6on	  
	  	  	  	  	  	  	  (though	  steady	  solu6on	  can	  be	  unstable).	  
5.  -‐	  Unstable	  region	  below	  solid	  curve	  has	  rather	  complicated	  

response.	  Nonetheless,	  domed	  line	  roughly	  separates	  
chirping	  and	  steady	  regions.	  	  

	  	  	  	  	  	  	  -‐	  Criterion	  most	  reliable	  in	  upper	  right	  regions.	  
	  	  	  	  	  	  	  -‐	  This	  predic6on	  not	  good	  for	  NSTX;	  marginal	  for	  DIII-‐D	  

Red	  diamonds	  	  NSTX,	  	  Green	  circles	  –	  D-‐IIID	  
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How	  bemer	  comparison	  with	  experiment	  is	  obtained	  
1. Accurate theory requires determination of eigenfunction's spatial profile 
2. Include phase space dependence of the physical quantities; 
    the stochastic diffusion due to both pitch angle scattering 
    and background turbulent diffusion (not previously considered in this problem)   



A	  general	  criterion	  for	  Alfvén	  wave	  chirping	  
	  (strongly	  dependent	  on	  compe66on	  between	  fast	  ion	  scamering	  and	  drag)	  	  

	  

Phase	  space	  integra6on	  

Eigenstructure	  informa6on:	  

Resonance	  surfaces:	  

Criterion	  was	  incorporated	  into	  NOVA-‐K:	  	  
nonlinear	  predic%on	  from	  linear	  physics	  elements	  

>0:	  fixed-‐frequency	  likely	  	  
<0:	  chirping	  likely	  

Crt	  accounts	  for	  collisional	  coefficients	  
varying	  along	  resonances	  and	  par6cle	  orbits	  

2

are the mean poloidal and toroidal transit frequencies
of the equilibrium orbit. The phase-space integration is
given by

´
dΓ... = (2π)3 �

σ�

´
dPϕ

´
dE/ωθ

´
mEP cdµ/q...,

where mEP is the mass of EPs, c is the light speed
and σ� accounts for counter- and co-passing particles.
The effective collisional operator can be cast in the form
C[f ] = ν3

scatt
∂2f
∂Ω2 + ν2

drag
∂f
∂Ω , where νscatt and νdrag are

understood to be the effective pitch-angle scattering and
drag (slowing down) coefficients, defined in Eq. 6 of Ref.
[15]. νstoch is the effective stochasticity, which includes
νscatt. In equation (1), the circumflex denotes normal-
ization with respect to γ = γL − γd (growth rate minus
damping rate) and t is the time normalized with the same
quantity. Vlasov simulation codes have shown [19, 20]
that the blow-up solutions of (1) are precursors to chirp-
ing behavior.

The type of nonlinear evolution of a wave destabilized
by a perturbing EP drive is strongly dependent on the
kernel of the integrals of Eq. (1), more specifically on
the ratio between the effective stochastic relaxation felt
by the EPs and the effective drag rate, as well as the lin-
ear growth rate. In Ref. [15], Eq. (1) was simplified by
using characteristic values for the collisional νscatt and
νdrag and conditions for the existence and stability of so-
lutions of the cubic equation were derived. In Fig. 1, we
test for the first time this prediction against modes mea-
sured in different tokamaks. In order to determine mode
properties, we employ the kinetic-MHD code NOVA [21]
to compute eigenstructures and the frequency continua
and gaps. Its kinetic postprocessor NOVA-K [22, 23]
is used to calculate perturbative contributions that can
stabilize and destabilize MHD eigenmodes. In addition,
NOVA-K is also employed to compute resonant surfaces
in (E , Pϕ, µ) space. In order to characterize the mode
being observed in the experiment, NSTX reflectometer
measurements are compared to the mode structures com-
puted by NOVA, employing a similar procedure as the
one used in Refs. [6, 24]. In DIII-D, similar identifi-
cation is performed using Electron Cyclotron Emission
(ECE) [25].

We see from Fig. 1 that about half of the chirping
NSTX modes lie in a region where a stable steady mode is
predicted by Ref. [15]. For the DIII-D experimental cases
that produced fixed-frequency modes, the predictions of
Ref. [15] are mostly in agreement although one point is
borderline and another one may be unstable enough to
be in a chirping regime. Hence we see that using the sim-
plified, although elaborate, modeling akin to that used in
[15], might be in satisfactory agreement with DIII-D data
but is generally not satisfactory for much of the NSTX
and TFTR data. This comparison indicates that the use
of a single characteristic value, being representative of
the entire phase space, for νscatt (considered the only con-
tribution to νstoch) and νdrag, although very insightful,
appears insufficient to provide quantitative predictions

Figure 1. Comparison between analytical predictions with
experiment when single characteristic values for phase space
parameters are chosen. The dotted line delineates the region
of existence of steady amplitude solutions of the cubic equa-
tion (1) while the solid line delineates the region of stability,
as predicted by [15]. Modes that chirped are represented in
red and the ones that were steady are in black, as experi-
mentally observed in DIII-D (disks), NSTX (diamonds) and
TFTR (square).

for practical tokamak cases. This conclusion motivated
the pursuit of a general theoretical prediction to take
into account important missing elements, such as spatial
mode structures and local phase-space contributions on
multiple resonant surfaces of the wave-particle interac-
tion terms, all of which are needed in toroidal geome-
try. The appropriate weightings for the various needed
quantities can be expressed in the action-angle formula-
tion. A necessary, although not sufficient, condition for
chirping solutions is that the right hand side of (1) be
positive. The resonance condition, δ (ω − Ωl (Pϕ, E , µ)),
allows one of the phase-space integrals to be eliminated.
Upon integration over τ1 and redefinition of the integra-
tion variable z = νdragτ one finds the following criterion
for the non-existence of steady solutions of (1):

Crt = 1
N
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For the resonances to be linearly destabilizing to pos-

itive energy waves, Int (plotted in Fig. 2) is the only
component of the criterion (2) that can be negative from
the phase-space regions which contribute positively to the
instability growth. N is a normalization factor consist-
ing of the same sum that appears in Eq. (2) except for
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for practical tokamak cases. This conclusion motivated
the pursuit of a general theoretical prediction to take
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Turbulence scattering explains why chirping common in NSTX but rare in DIII-D 

Proposed	  criterion	  for	  Alfvén	  wave	  chirping	  onset:	  
	  

Arrows indicate shift in chirping 
criterion in going from  <vstoch> due 
to pitch angle scattering alone, to 
due to  micro-turbulence and pitch- 
angle scattering 
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In NSTX , Alfvén wave chirping 
 criterion  agrees with experimental 
Data. Criterion value insensitive to 
~ 30% increase in <vstoch> due 
to micro-turbulence.  
 

chirping, NSTX Fixed-frequencies, DIII-D and TFTR 

From	  GTC	  gyrokine6c	  simula6ons	  for	  passing	  
par6cles	  (Zhang,	  Lin	  and	  Chen,	  PRL	  2008):	  
	  

Unlike	  in	  DIII-‐D,	  ion	  transport	  in	  NSTX	  in	  
mostly	  neoclassical	  	  

Inclusion	  of	  fast	  ion	  micro-‐turbulence	  
	  

>0:	  fixed-‐frequency	  likely	  	  
<0:	  chirping	  likely	  
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for practical tokamak cases. This conclusion motivated
the pursuit of a general theoretical prediction to take
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itive energy waves, Int (plotted in Fig. 2) is the only
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DIII-‐D	  data	  does	  	  not	  typically	  	  show	  fast	  chirping.	  When	  such	  chirping	  	  
does	  arise,	  it	  occurs	  when	  micro-‐turbulent	  	  transport	  is	  reduced,	  prior	  to	  L-‐H	  transi%on,	  
as	  is	  displayed	  in	  above	  figures.	  	  



Conclusions	  
1.  A	  theore6cal	  criterion	  for	  chirping	  onset	  of	  TAE	  modes	  in	  experiment	  was	  compared	  

with	  experimental	  data	  in	  NSTX	  and	  DIII-‐D.	  	  
2.  Very	  good	  correla6on	  was	  obtained	  between	  the	  two	  only	  when	  the	  theory	  

incorporated	  the	  correct	  profiles	  for	  the	  mode	  structure,	  the	  dependence	  of	  velocity	  
diffusion	  on	  pitch	  angle	  scamering	  and	  the	  inclusion	  of	  energe6c	  par6cle	  diffusion	  due	  
to	  background	  turbulence,	  taking	  into	  account	  the	  reduc6on	  of	  energe6c	  par6cle	  
diffusion	  with	  energy	  due	  to	  FLR	  averaging	  over	  rapidly	  spa6ally	  varying	  turbulent	  	  
structures.	  

3.  NSTX	  data	  displayed	  a	  strong	  tendency	  for	  chirping	  in	  agreement	  with	  theore6cal	  
predic6ons,	  as	  background	  ion	  transport,	  which	  	  is	  low	  (it	  is	  neo-‐classical)	  so	  that	  
classical	  pitch-‐angle	  scamering	  is	  the	  main	  contributor	  to	  the	  diffusive	  process,	  and	  this	  
diffusion	  is	  not	  strong	  enough	  to	  prevent	  the	  onset	  of	  chirping	  of	  TAE	  modes.	  

4.  Most	  DIII-‐D	  shots	  produced	  steady	  oscilla6ons	  during	  Alfvenic	  instability.	  In	  these	  shots	  
the	  background	  turbulence	  appeared	  large	  enough	  to	  prevent	  chirping	  from	  arising.	  

5.  Only	  a	  small	  minority	  of	  DIII-‐D	  shots	  produced	  a	  chirping	  response.	  It	  was	  found	  that	  on	  
these	  shots	  there	  was	  a	  pronounced	  reduc6on	  in	  the	  background	  ion-‐turbulence	  level.	  	  

6.  This	  inves6ga6on	  appears	  to	  have	  answered	  a	  previous	  puzzle	  for	  why,	  when	  Alfvenic	  
oscilla6ons	  appear	  in	  experimental	  data	  in	  NSTX	  and	  DIII-‐D,	  	  chirping	  Alfvenic	  modes	  
usually	  arise	  in	  NSTX	  but	  only	  rarely	  arise	  in	  DIII-‐D.	  	  

7.  This	  method	  of	  analysis	  can	  be	  applied	  to	  other	  experiments	  including	  ITER.	  	  
	  	  





Build	  simula6on	  code	  	  based	  on	  
perturba6on	  from	  equilibrium	  orbits	  

•  Advantage:	  Time	  step	  not	  based	  on	  mode	  frequency	  but	  on	  
strength	  of	  wave	  par6cle	  interac6on	  

•  Wave	  equa6on	  based	  on	  modifica6on	  of	  WKB	  method:	  	  

•  For	  test	  case	  we	  treat	  large	  aspect	  	  	  
	  	  	  	  	  and	  circular	  tokamak	  geometry	  
•  We	  derive	  an	  inner	  region	  wave	  equa6on,	  that	  can	  be	  

matched	  to	  a	  fixed	  out	  region	  solu6on	  (manner	  similar	  to	  Δ’	  
matching	  of	  tearing	  modes).	  

•  Currents	  in	  wave	  equa6on	  assumed	  generated	  by	  a	  par6cle	  
response	  to	  a	  Hamiltonian	  with	  a	  single	  slowly	  varying	  
frequency	  component	  
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Inner	  region	  wave	  equa6on	  and	  current	  

where	  the	  current	  source	  terms	  cause	  the	  resonant	  interac6on	  between	  EPs	  and	  waves:�

x �

ω

m+1�m�

∆b

resonance	  line�

linear	  EPM�

•  Wave	  trapped	  EP’s	  move	  along	  	  
resonance	  line:	  

•  Linear	  EPM	  becomes	  unstable	  near	  
the	  low	  6p	  with	  the	  EP	  orbits	  
penetra6ng	  both	  con6nuum	  points. �

Ω(x) =
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0
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Reduced	  Vlasov	  Equa6on	  
Bounce averaged drift-kinetic equation: 
  ∂f

∂t
+ [f,H] = 0

where in the wave frame the Hamiltonian is obtained:  (below ΔΩ normalized orbit width) 

H(ξ,Ω) =
Ω2

2
+ λ�[eıξ

� π

0
dθ(cos(l + 1)θ + cos lθ − cos(l − 1)θ − cos(l − 2)θ)ψ+(Ω+∆Ω cos θ)

+(cos(l + 1)θ − cos lθ − cos(l − 1)θ + cos(l − 2)θ)ψ−(Ω+∆Ω cos θ)] +
dω

dt
ξ

Wave and Vlasov equations are solved 
together. As an example for EPM 
mode, we see phase space clump 
structure in the wave frame and 
comparison of separatrix shape 
between simulation and theory. 
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Contour	  Fit	  



Linear	  EPM	  mode	  
Linear unstable TAE and EPM mode are calculated using a non-perturbative 
linear eigenmode code. EPM mode emerges in continuum at threshold nh/n0. 
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Result	  from	  simula6on	  
•  Long period of limited benign chirping, then converting to EPM mode; 
•  Upon EPM excitation, rapid downward chirp that propagates through continuum, 

until model no longer valid. 

Note that rapid chirp appears on time scale comparable to physically observed time scale. 

Simula6on	  es6mate	  of	  chirp	  rate	  in	  several	  MHz/s	  range	  as	  in	  experiment	  



Simplified	  nonlinear	  stage	  predic6ons	  
of	  EPM	  compared	  to	  simula6on	  	  

Complex amplitude,                                        solved by stationary phase method  
Distribution                           determined by assuming adiabaticity conservation of wave 
trapped particles and with adiabatic entrapment of passing particles with increasing separatrix.  
We obtain following expression. LHS real, RHS complex in general with reality imposed.  
 
 
Now we solve for                                                and compare with simulation solution:   
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Conclusion	  &	  Comments	  
•  Proof of principle for viability of method. Allows simulation 

simplification that serves as guide to theoretical analysis 
•  Important physical mechanism clarified: How explosive 

chirping can emerge and with the maintenance of adiabaticity 
during chirp.  

•  MHD nonlinearity absent in this presentation. Experimental 
data, showing locking of mode frequencies at several n-values, 
indicative for need of accounting for MHD non-linearity to 
achieve better theoretical modeling. 

•  Future work needs to generalize method to when equilibrium 
guiding center orbits have more general properties than being 
displaced circles.  

•  Challenge to develop efficient transformation and inverse 
transformation from action angle frame of particles to field 
coordinate variables  
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