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  Predic6ng	
  and	
  understanding	
  frequency	
  chirping	
  in	
  fusion	
  experiments	
  

1.  Spontaneous	
  fast	
  chirping	
  phenomena	
  is	
  oaen	
  observed	
  in	
  experiments	
  with	
  energe6c	
  par6cles	
  that	
  
excite	
  Alfvenic	
  instabili6es.	
  Above	
  are	
  examples	
  in	
  NSTX	
  

2.  NSTX	
  experiments	
  frequently	
  observes	
  chirping,	
  while	
  chirping	
  is	
  rarely	
  observed	
  in	
  DIII-­‐D.	
  Why?	
  
3.  Here	
  we	
  use	
  an	
  expanded	
  version	
  of	
  a	
  theore6cal	
  model,	
  (first	
  proposed	
  by	
  Lilley,	
  Sharapov	
  and	
  

Breizman,	
  (2009)	
  )	
  to	
  see	
  if	
  a	
  predic6ve	
  theory	
  can	
  be	
  employed	
  to	
  explain,	
  when	
  there	
  is	
  Alfvenic	
  
instablity,	
  whether	
  chirping	
  will	
  or	
  will	
  not	
  arise.	
  

4.  The	
  above	
  figure	
  on	
  right,	
  of	
  NSTX	
  data,	
  shows	
  that	
  TAE	
  modes	
  can	
  increase	
  in	
  intensity	
  with	
  6me,	
  and	
  
even	
  produce	
  rapid	
  and	
  large	
  frequency	
  shia	
  chirping	
  events.	
  	
  

5.  Here	
  we	
  show	
  a	
  numerical	
  simula6on	
  of	
  this	
  rapid	
  chirping	
  mechanism	
  using	
  a	
  reduced	
  simula6on	
  
theory	
  for	
  TAE	
  modes	
  that	
  replicates	
  some	
  of	
  the	
  important	
  features	
  of	
  the	
  chirping	
  response.	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

Introduc6on	
  



Nonlinear	
  dynamics	
  of	
  driven	
  kine6c	
  systems	
  close	
  to	
  threshold	
  
Star6ng	
  point:	
  kine%c	
  equa%on	
  plus	
  wave	
  equa%on	
  
Assump6ons:	
  
•  Perturba6ve	
  procedure	
  for	
  expansion	
  in	
  mode	
  amplitude	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
•  Trunca6on	
  at	
  third	
  order	
  due	
  to	
  closeness	
  to	
  marginal	
  stability	
  
•  First	
  use	
  characteris6c	
  parameter	
  to	
  obtain	
  problem	
  iden6cal	
  to	
  bump-­‐on-­‐tail	
  	
  
Cubic	
  equa%on:	
  lowest-­‐order	
  nonlinear	
  correc%on	
  to	
  the	
  evolu%on	
  of	
  mode	
  amplitude	
  A:	
  
(Hickernell,	
  1982	
  (fluids),	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Berk,	
  Breizman	
  and	
  Pekker,	
  PRL	
  1996	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Lilley,	
  Breizman	
  and	
  Sharapov,	
  PRL	
  2009)	
  	
  

	
  
	
  
	
  Predicts	
  a	
  sufficient	
  	
  condi6on	
  for	
  onset	
  of	
  chirping:	
  when	
  no	
  sta6onary	
  response	
  exists	
  

1.  -­‐	
  First	
  Amempt	
  (use	
  characteris6c	
  parameters).	
  
2.  -­‐	
  Dashed	
  line	
  separates	
  blank	
  and	
  hatched	
  regions.	
  
3.  -­‐	
  In	
  hatched	
  region	
  no	
  steady	
  solu6ons	
  exist	
  where	
  	
  Vlasov	
  

simula6ons	
  have	
  always	
  produced	
  chirping.	
  
	
  	
  In	
  -­‐	
  In	
  blank	
  region	
  there	
  always	
  is	
  a	
  steady	
  solu6on	
  
	
  	
  	
  	
  	
  	
  	
  (though	
  steady	
  solu6on	
  can	
  be	
  unstable).	
  
5.  -­‐	
  Unstable	
  region	
  below	
  solid	
  curve	
  has	
  rather	
  complicated	
  

response.	
  Nonetheless,	
  domed	
  line	
  roughly	
  separates	
  
chirping	
  and	
  steady	
  regions.	
  	
  

	
  	
  	
  	
  	
  	
  	
  -­‐	
  Criterion	
  most	
  reliable	
  in	
  upper	
  right	
  regions.	
  
	
  	
  	
  	
  	
  	
  	
  -­‐	
  This	
  predic6on	
  not	
  good	
  for	
  NSTX;	
  marginal	
  for	
  DIII-­‐D	
  

Red	
  diamonds	
  	
  NSTX,	
  	
  Green	
  circles	
  –	
  D-­‐IIID	
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How	
  bemer	
  comparison	
  with	
  experiment	
  is	
  obtained	
  
1. Accurate theory requires determination of eigenfunction's spatial profile 
2. Include phase space dependence of the physical quantities; 
    the stochastic diffusion due to both pitch angle scattering 
    and background turbulent diffusion (not previously considered in this problem)   



A	
  general	
  criterion	
  for	
  Alfvén	
  wave	
  chirping	
  
	
  (strongly	
  dependent	
  on	
  compe66on	
  between	
  fast	
  ion	
  scamering	
  and	
  drag)	
  	
  

	
  

Phase	
  space	
  integra6on	
  

Eigenstructure	
  informa6on:	
  

Resonance	
  surfaces:	
  

Criterion	
  was	
  incorporated	
  into	
  NOVA-­‐K:	
  	
  
nonlinear	
  predic%on	
  from	
  linear	
  physics	
  elements	
  

>0:	
  fixed-­‐frequency	
  likely	
  	
  
<0:	
  chirping	
  likely	
  

Crt	
  accounts	
  for	
  collisional	
  coefficients	
  
varying	
  along	
  resonances	
  and	
  par6cle	
  orbits	
  

2

are the mean poloidal and toroidal transit frequencies
of the equilibrium orbit. The phase-space integration is
given by

´
dΓ... = (2π)3 �

σ�

´
dPϕ

´
dE/ωθ

´
mEP cdµ/q...,

where mEP is the mass of EPs, c is the light speed
and σ� accounts for counter- and co-passing particles.
The effective collisional operator can be cast in the form
C[f ] = ν3

scatt
∂2f
∂Ω2 + ν2

drag
∂f
∂Ω , where νscatt and νdrag are

understood to be the effective pitch-angle scattering and
drag (slowing down) coefficients, defined in Eq. 6 of Ref.
[15]. νstoch is the effective stochasticity, which includes
νscatt. In equation (1), the circumflex denotes normal-
ization with respect to γ = γL − γd (growth rate minus
damping rate) and t is the time normalized with the same
quantity. Vlasov simulation codes have shown [19, 20]
that the blow-up solutions of (1) are precursors to chirp-
ing behavior.

The type of nonlinear evolution of a wave destabilized
by a perturbing EP drive is strongly dependent on the
kernel of the integrals of Eq. (1), more specifically on
the ratio between the effective stochastic relaxation felt
by the EPs and the effective drag rate, as well as the lin-
ear growth rate. In Ref. [15], Eq. (1) was simplified by
using characteristic values for the collisional νscatt and
νdrag and conditions for the existence and stability of so-
lutions of the cubic equation were derived. In Fig. 1, we
test for the first time this prediction against modes mea-
sured in different tokamaks. In order to determine mode
properties, we employ the kinetic-MHD code NOVA [21]
to compute eigenstructures and the frequency continua
and gaps. Its kinetic postprocessor NOVA-K [22, 23]
is used to calculate perturbative contributions that can
stabilize and destabilize MHD eigenmodes. In addition,
NOVA-K is also employed to compute resonant surfaces
in (E , Pϕ, µ) space. In order to characterize the mode
being observed in the experiment, NSTX reflectometer
measurements are compared to the mode structures com-
puted by NOVA, employing a similar procedure as the
one used in Refs. [6, 24]. In DIII-D, similar identifi-
cation is performed using Electron Cyclotron Emission
(ECE) [25].

We see from Fig. 1 that about half of the chirping
NSTX modes lie in a region where a stable steady mode is
predicted by Ref. [15]. For the DIII-D experimental cases
that produced fixed-frequency modes, the predictions of
Ref. [15] are mostly in agreement although one point is
borderline and another one may be unstable enough to
be in a chirping regime. Hence we see that using the sim-
plified, although elaborate, modeling akin to that used in
[15], might be in satisfactory agreement with DIII-D data
but is generally not satisfactory for much of the NSTX
and TFTR data. This comparison indicates that the use
of a single characteristic value, being representative of
the entire phase space, for νscatt (considered the only con-
tribution to νstoch) and νdrag, although very insightful,
appears insufficient to provide quantitative predictions

Figure 1. Comparison between analytical predictions with
experiment when single characteristic values for phase space
parameters are chosen. The dotted line delineates the region
of existence of steady amplitude solutions of the cubic equa-
tion (1) while the solid line delineates the region of stability,
as predicted by [15]. Modes that chirped are represented in
red and the ones that were steady are in black, as experi-
mentally observed in DIII-D (disks), NSTX (diamonds) and
TFTR (square).

for practical tokamak cases. This conclusion motivated
the pursuit of a general theoretical prediction to take
into account important missing elements, such as spatial
mode structures and local phase-space contributions on
multiple resonant surfaces of the wave-particle interac-
tion terms, all of which are needed in toroidal geome-
try. The appropriate weightings for the various needed
quantities can be expressed in the action-angle formula-
tion. A necessary, although not sufficient, condition for
chirping solutions is that the right hand side of (1) be
positive. The resonance condition, δ (ω − Ωl (Pϕ, E , µ)),
allows one of the phase-space integrals to be eliminated.
Upon integration over τ1 and redefinition of the integra-
tion variable z = νdragτ one finds the following criterion
for the non-existence of steady solutions of (1):

Crt = 1
N

�

j,σ�

ˆ
dPϕ

ˆ
dµ

|Vj |
4

ωθν4
drag

����
∂Ωj

∂I
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Int < 0 (2)

where

Int ≡ Re

ˆ ∞

0
dz

z
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ν3
drag

z − i
exp
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−
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ν3
stoch

ν3
drag

z3 + iz2

�

(3)
For the resonances to be linearly destabilizing to pos-

itive energy waves, Int (plotted in Fig. 2) is the only
component of the criterion (2) that can be negative from
the phase-space regions which contribute positively to the
instability growth. N is a normalization factor consist-
ing of the same sum that appears in Eq. (2) except for
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for practical tokamak cases. This conclusion motivated
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Turbulence scattering explains why chirping common in NSTX but rare in DIII-D 

Proposed	
  criterion	
  for	
  Alfvén	
  wave	
  chirping	
  onset:	
  
	
  

Arrows indicate shift in chirping 
criterion in going from  <vstoch> due 
to pitch angle scattering alone, to 
due to  micro-turbulence and pitch- 
angle scattering 
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In NSTX , Alfvén wave chirping 
 criterion  agrees with experimental 
Data. Criterion value insensitive to 
~ 30% increase in <vstoch> due 
to micro-turbulence.  
 

chirping, NSTX Fixed-frequencies, DIII-D and TFTR 

From	
  GTC	
  gyrokine6c	
  simula6ons	
  for	
  passing	
  
par6cles	
  (Zhang,	
  Lin	
  and	
  Chen,	
  PRL	
  2008):	
  
	
  

Unlike	
  in	
  DIII-­‐D,	
  ion	
  transport	
  in	
  NSTX	
  in	
  
mostly	
  neoclassical	
  	
  

Inclusion	
  of	
  fast	
  ion	
  micro-­‐turbulence	
  
	
  

>0:	
  fixed-­‐frequency	
  likely	
  	
  
<0:	
  chirping	
  likely	
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for practical tokamak cases. This conclusion motivated
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DIII-­‐D	
  data	
  does	
  	
  not	
  typically	
  	
  show	
  fast	
  chirping.	
  When	
  such	
  chirping	
  	
  
does	
  arise,	
  it	
  occurs	
  when	
  micro-­‐turbulent	
  	
  transport	
  is	
  reduced,	
  prior	
  to	
  L-­‐H	
  transi%on,	
  
as	
  is	
  displayed	
  in	
  above	
  figures.	
  	
  



Conclusions	
  
1.  A	
  theore6cal	
  criterion	
  for	
  chirping	
  onset	
  of	
  TAE	
  modes	
  in	
  experiment	
  was	
  compared	
  

with	
  experimental	
  data	
  in	
  NSTX	
  and	
  DIII-­‐D.	
  	
  
2.  Very	
  good	
  correla6on	
  was	
  obtained	
  between	
  the	
  two	
  only	
  when	
  the	
  theory	
  

incorporated	
  the	
  correct	
  profiles	
  for	
  the	
  mode	
  structure,	
  the	
  dependence	
  of	
  velocity	
  
diffusion	
  on	
  pitch	
  angle	
  scamering	
  and	
  the	
  inclusion	
  of	
  energe6c	
  par6cle	
  diffusion	
  due	
  
to	
  background	
  turbulence,	
  taking	
  into	
  account	
  the	
  reduc6on	
  of	
  energe6c	
  par6cle	
  
diffusion	
  with	
  energy	
  due	
  to	
  FLR	
  averaging	
  over	
  rapidly	
  spa6ally	
  varying	
  turbulent	
  	
  
structures.	
  

3.  NSTX	
  data	
  displayed	
  a	
  strong	
  tendency	
  for	
  chirping	
  in	
  agreement	
  with	
  theore6cal	
  
predic6ons,	
  as	
  background	
  ion	
  transport,	
  which	
  	
  is	
  low	
  (it	
  is	
  neo-­‐classical)	
  so	
  that	
  
classical	
  pitch-­‐angle	
  scamering	
  is	
  the	
  main	
  contributor	
  to	
  the	
  diffusive	
  process,	
  and	
  this	
  
diffusion	
  is	
  not	
  strong	
  enough	
  to	
  prevent	
  the	
  onset	
  of	
  chirping	
  of	
  TAE	
  modes.	
  

4.  Most	
  DIII-­‐D	
  shots	
  produced	
  steady	
  oscilla6ons	
  during	
  Alfvenic	
  instability.	
  In	
  these	
  shots	
  
the	
  background	
  turbulence	
  appeared	
  large	
  enough	
  to	
  prevent	
  chirping	
  from	
  arising.	
  

5.  Only	
  a	
  small	
  minority	
  of	
  DIII-­‐D	
  shots	
  produced	
  a	
  chirping	
  response.	
  It	
  was	
  found	
  that	
  on	
  
these	
  shots	
  there	
  was	
  a	
  pronounced	
  reduc6on	
  in	
  the	
  background	
  ion-­‐turbulence	
  level.	
  	
  

6.  This	
  inves6ga6on	
  appears	
  to	
  have	
  answered	
  a	
  previous	
  puzzle	
  for	
  why,	
  when	
  Alfvenic	
  
oscilla6ons	
  appear	
  in	
  experimental	
  data	
  in	
  NSTX	
  and	
  DIII-­‐D,	
  	
  chirping	
  Alfvenic	
  modes	
  
usually	
  arise	
  in	
  NSTX	
  but	
  only	
  rarely	
  arise	
  in	
  DIII-­‐D.	
  	
  

7.  This	
  method	
  of	
  analysis	
  can	
  be	
  applied	
  to	
  other	
  experiments	
  including	
  ITER.	
  	
  
	
  	
  





Build	
  simula6on	
  code	
  	
  based	
  on	
  
perturba6on	
  from	
  equilibrium	
  orbits	
  

•  Advantage:	
  Time	
  step	
  not	
  based	
  on	
  mode	
  frequency	
  but	
  on	
  
strength	
  of	
  wave	
  par6cle	
  interac6on	
  

•  Wave	
  equa6on	
  based	
  on	
  modifica6on	
  of	
  WKB	
  method:	
  	
  

•  For	
  test	
  case	
  we	
  treat	
  large	
  aspect	
  	
  	
  
	
  	
  	
  	
  	
  and	
  circular	
  tokamak	
  geometry	
  
•  We	
  derive	
  an	
  inner	
  region	
  wave	
  equa6on,	
  that	
  can	
  be	
  

matched	
  to	
  a	
  fixed	
  out	
  region	
  solu6on	
  (manner	
  similar	
  to	
  Δ’	
  
matching	
  of	
  tearing	
  modes).	
  

•  Currents	
  in	
  wave	
  equa6on	
  assumed	
  generated	
  by	
  a	
  par6cle	
  
response	
  to	
  a	
  Hamiltonian	
  with	
  a	
  single	
  slowly	
  varying	
  
frequency	
  component	
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Inner	
  region	
  wave	
  equa6on	
  and	
  current	
  

where	
  the	
  current	
  source	
  terms	
  cause	
  the	
  resonant	
  interac6on	
  between	
  EPs	
  and	
  waves:�

x �

ω

m+1�m�

∆b

resonance	
  line�

linear	
  EPM�

•  Wave	
  trapped	
  EP’s	
  move	
  along	
  	
  
resonance	
  line:	
  

•  Linear	
  EPM	
  becomes	
  unstable	
  near	
  
the	
  low	
  6p	
  with	
  the	
  EP	
  orbits	
  
penetra6ng	
  both	
  con6nuum	
  points. �

Ω(x) =
nv�
R

−
(m+ l)v�
q(x)R

− ω(t)

(ω(t) + 1 + ı
∂

∂t
)ψ+(x, t)− xψ−(x, t) = −C−(t) + J+(x, t)

(ω(t)− 1 + ı
∂

∂t
)ψ−(x, t)− xψ+(x, t) = −C+(t) + J−(x, t)

J+(x, t) = ηβEP

� π

0
dθ

� 2π

0
dξe−ıξf(ξ, x−∆b cos θ, t)(cos(l + 1)θ + cos lθ − cos(l − 1)θ − cos(l − 2)θ)

J−(x, t) = ηβEP

� π

0
dθ

� 2π

0
dξe−ıξf(ξ, x−∆b cos θ, t)(cos(l + 1)θ − cos lθ − cos(l − 1)θ + cos(l − 2)θ)



Reduced	
  Vlasov	
  Equa6on	
  
Bounce averaged drift-kinetic equation: 
  ∂f

∂t
+ [f,H] = 0

where in the wave frame the Hamiltonian is obtained:  (below ΔΩ normalized orbit width) 

H(ξ,Ω) =
Ω2

2
+ λ�[eıξ

� π

0
dθ(cos(l + 1)θ + cos lθ − cos(l − 1)θ − cos(l − 2)θ)ψ+(Ω+∆Ω cos θ)

+(cos(l + 1)θ − cos lθ − cos(l − 1)θ + cos(l − 2)θ)ψ−(Ω+∆Ω cos θ)] +
dω

dt
ξ

Wave and Vlasov equations are solved 
together. As an example for EPM 
mode, we see phase space clump 
structure in the wave frame and 
comparison of separatrix shape 
between simulation and theory. 
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Linear	
  EPM	
  mode	
  
Linear unstable TAE and EPM mode are calculated using a non-perturbative 
linear eigenmode code. EPM mode emerges in continuum at threshold nh/n0. 
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Result	
  from	
  simula6on	
  
•  Long period of limited benign chirping, then converting to EPM mode; 
•  Upon EPM excitation, rapid downward chirp that propagates through continuum, 

until model no longer valid. 

Note that rapid chirp appears on time scale comparable to physically observed time scale. 

Simula6on	
  es6mate	
  of	
  chirp	
  rate	
  in	
  several	
  MHz/s	
  range	
  as	
  in	
  experiment	
  



Simplified	
  nonlinear	
  stage	
  predic6ons	
  
of	
  EPM	
  compared	
  to	
  simula6on	
  	
  

Complex amplitude,                                        solved by stationary phase method  
Distribution                           determined by assuming adiabaticity conservation of wave 
trapped particles and with adiabatic entrapment of passing particles with increasing separatrix.  
We obtain following expression. LHS real, RHS complex in general with reality imposed.  
 
 
Now we solve for                                                and compare with simulation solution:   
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Conclusion	
  &	
  Comments	
  
•  Proof of principle for viability of method. Allows simulation 

simplification that serves as guide to theoretical analysis 
•  Important physical mechanism clarified: How explosive 

chirping can emerge and with the maintenance of adiabaticity 
during chirp.  

•  MHD nonlinearity absent in this presentation. Experimental 
data, showing locking of mode frequencies at several n-values, 
indicative for need of accounting for MHD non-linearity to 
achieve better theoretical modeling. 

•  Future work needs to generalize method to when equilibrium 
guiding center orbits have more general properties than being 
displaced circles.  

•  Challenge to develop efficient transformation and inverse 
transformation from action angle frame of particles to field 
coordinate variables  



FINIS	
  


