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Introduction
Predicting and understanding frequency chirping in fusion experiments
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Spontaneous fast chirping phenomena is often observed in experiments with energetic particles that
excite Alfvenic instabilities. Above are examples in NSTX

NSTX experiments frequently observes chirping, while chirping is rarely observed in DIlI-D. Why?

Here we use an expanded version of a theoretical model, (first proposed by Lilley, Sharapov and
Breizman, (2009) ) to see if a predictive theory can be employed to explain, when there is Alfvenic
instablity, whether chirping will or will not arise.

The above figure on right, of NSTX data, shows that TAE modes can increase in intensity with time, and
even produce rapid and large frequency shift chirping events.

Here we show a numerical simulation of this rapid chirping mechanism using a reduced simulation
theory for TAE modes that replicates some of the important features of the chirping response.



Nonlinear dynamics of driven kinetic systems close to threshold

Starting point: kinetic equation plus wave equation

Assumptions:

e Perturbative procedure for expansion in mode amplitude

* Truncation at third order due to closeness to marginal stability

* First use characteristic parameter to obtain problem identical to bump-on-tail

Cubic equation: lowest-order nonlinear correction to the evolution of mode amplitude A:
(Hickernell, 1982 ( ﬂmds) Berk, Breizman and Pekker, PRL 1996 Lilley, Breizman and Sharapov, PRL 2009)
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Predicts a sufficient condition for onset of chirping: when no stationary response exists

° | - First Attempt (use characteristic parameters).
stable steady solutions N - Dashed line separates blank and hatched regions.
(no chirping modes expected) § “_ | -Inhatched region no steady solutions exist where Vlasov
simulations have always produced chirping.
- In blank region there always is a steady solution
(though steady solution can be unstable).
- Unstable region below solid curve has rather complicated
response. Nonetheless, dotted line roughly separates
\ steady solutiondn chirping and steady regions.
0.3 SN . o "50 - Criterion most reliable in upper right regions.
- This prediction not good for NSTX; marginal for DIII-D
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How better comparison with experiment is obtained

1. Accurate theory requires determination of eigenfunction's spatial profile
2. Include phase space dependence of the physical quantities;
the stochastic diffusion due to both pitch angle scattering

and background turbulent diffusion (not previously considered in this problem)
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where the stochastic diffusion term v°

stoch’

the electron drag term v,

g9

and the wave interaction term |V ; " are functions in phase space at

phase space points, (£, P.(E, i), it) which is determined from the relation:
Q, (E,u)=no, (E,P(p(E, 1), u) +jo, (E,P(p(E, 1), u) —w,
o

and —
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A general criterion for Alfvén wave chirping

(strongly dependent on competition between fast ion scattering and drag)

4 : :

Crt = iz/dp /d,u L >0: fixed-frequency likely
N v drag 8I¢ oI <0: chirping likely

i 9 3 Crt accounts for collisional coefficients

Int = Re/ Z— exp | —= ngtoch 3 4 a2 varying along resonances and particle orbits
0 Y ) 3 Vdrag
Resonance surfaces: 0.1 .
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Phase space integration (no chirping allowed)
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i i ; Int
Eigenstructure information: a4l : ,
: 03 Boundary at Lsc—mx]_04
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—05 (if Vscatts Varag are constants)
Criterion was incorporated into NOVA-K: og—F

nonlinear prediction from linear physics elements Vscatt/Varag ‘



Turbulence scattering explains why chirping common in NSTX but rare in DIII-D

Proposed criterion for Alfvén wave chirping onset:

Duarte, Berk, Gorelenkov et al, PRL (submitted)
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chirping, NSTX Fixed-frequencies, DIII-D and TFTR
. . . 0.1 tant f ted constant frequency expected
Inclusion of fast ion micro-turbulence ot Treney e 04
I -0l i @| I +\
From GTC gyrokinetic simulations for passing T region where 0
particles (Zhang, Lin and Chen, PRL 2008): O _02 chirping may occur | l (b)
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Dgp (Epp) = Dy, T 2 _04 06
'EP ~05 < 0‘ 08 region where
chirping may occur
-1
g . . . 25 3 35 0 5 10 1520
Unlike in DIII-D, ion transport in NSTX in
H <Vst0ch>/<vdrag> <VStOCh>/<Vdrag>
mostly neoclassical - .
i . Arrows indicate shift in chirping
In NSTX, Alfvén wave chirping criterion in going from <v > due
criterion agrees with experimental o pitch angle scattering alone, to
Data. Criterion value insensitive to  due to micro-turbulence and pitch-
~ 30% increase in <Vsioch> due qng'e scqﬂ‘ering
to micro-turbulence.




Correlation between the emergence of chirping and a substantial
decrease of ion micro-turbulence in DIII-D:
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DIlI-D data does not typically show fast chirping. When such chirping
does arise, it occurs when micro-turbulent transport is reduced, prior to L-H transition,

as is displayed in above figures.



Conclusions

A theoretical criterion for chirping onset of TAE modes in experiment was compared
with experimental data in NSTX and DIII-D.

Very good correlation was obtained between the two only when the theory
incorporated the correct profiles for the mode structure, the dependence of velocity
diffusion on pitch angle scattering and the inclusion of energetic particle diffusion due
to background turbulence, taking into account the reduction of energetic particle
diffusion with energy due to FLR averaging over rapidly spatially varying turbulent
structures.

NSTX data displayed a strong tendency for chirping in agreement with theoretical
predictions, as background ion transport, which is low (it is neo-classical) so that
classical pitch-angle scattering is the main contributor to the diffusive process, and this
diffusion is not strong enough to prevent the onset of chirping of TAE modes.

Most DIII-D shots produced steady oscillations during Alfvenic instability. In these shots
the background turbulence appeared large enough to prevent chirping from arising.
Only a small minority of DIII-D shots produced a chirping response. It was found that on
these shots there was a pronounced reduction in the background ion-turbulence level.
This investigation appears to have answered a previous puzzle for why, when Alfvenic
oscillations appear in experimental data in NSTX and DIlI-D, chirping Alfvenic modes
usually arise in NSTX but only rarely arise in DIII-D.

This method of analysis can be applied to other experiments including ITER.
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Build simulation code based on
perturbation from equilibrium orbits

Advantage: Time step not based on mode frequency but on
strength of wave particle interaction

Wave equation bazsed on modification of WKB method:

WH—wZ(t)—iZw(t)%
For test case we treat large aspect 1/ e=R/r = v/z/ /vie >> ]

and circular tokamak geometry

We derive an inner region wave equation, that can be
matched to a fixed out region solution (manner similar to A’
matching of tearing modes).

Currents in wave equation assumed generated by a particle
response to a Hamiltonian with a single slowly varying
frequency component



Inner region wave equation and current

resonance line

\Iinear EPM

Wave trapped EP’s move along

resonance line:
_ny (m—l—l)vH B
Qz) = 7 (R w(t)
Linear EPM becomes unstable near
the low tip with the EP orbits

penetrating both continuum points.
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where the current source terms cause the resonant interaction between EPs and waves:
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J(x,t) = nﬁEP/O d@/o dée ™ f(&, 2 — Ay cos B, t)(cos(l +1)0 — coslf — cos(l — 1)8 + cos(l — 2)6)



Reduced Vlasov Equation

Bounce averaged drift-kinetic equation:

of B

where in the wave frame the Hamiltonian is obtained: (below A, normalized orbit width)
2

H(E Q) = % + A?R[e"’s/ df(cos(l +1)0 + coslf — cos(l — 1)0 — cos(l — 2)8)yp ™ (Q + Aq cos 6)
0

Contour Fit

Wave and Vlasov equations are solved
together. As an example for EPM
mode, we see phase space clump
structure in the wave frame and
comparison of separatrix shape
between simulation and theory.




Linear EPM mode

Linear unstable TAE and EPM mode are calculated using a non-perturbative
linear eigenmode code. EPM mode emerges in continuum at threshold n,/n,,.
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Result from simulation

* Long period of limited benign chirping, then converting to EPM mode;

* Upon EPM excitation, rapid downward chirp that propagates through continuum,
until model no longer valid.

0.35 0.36 0.37 .38 .39 0.4 0.41 .42
BEp

Note that rapid chirp appears on time scale comparable to physically observed time scale.

Simulation estimate of chirp rate in several MHz/s range as in experiment



Simplified nonlinear stage predictions
of EPM compared to simulation

Complex amplitude, wmﬂ(x,w(t);w,f,i—?jz%(w* ~y") solved by stationary phase method

Distribution f(¢,,t) = f(J(t)) determined by assuming adiabaticity conservation of wave
trapped particles and with adiabatic entrapment of passing particles with increasing separatrix.

We obtain following expression. LHS real, RHS complex in general with reality imposed.

wi(Q = 0,w) = G(ws, C;—C:,w) = )\/O df sin? 01),,, (w(t) + Aq cos )

Now we solve for (wb,a(t) =, do(t)/d t)Vs. w(t) and compare with simulation solution:
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Conclusion & Comments

Proof of principle for viability of method. Allows simulation
simplification that serves as guide to theoretical analysis

Important physical mechanism clarified: How explosive
chirping can emerge and with the maintenance of adiabaticity
during chirp.

MHD nonlinearity absent in this presentation. Experimental
data, showing locking of mode frequencies at several n-values,
indicative for need of accounting for MHD non-linearity to
achieve better theoretical modeling.

Future work needs to generalize method to when equilibrium
guiding center orbits have more general properties than being
displaced circles.

Challenge to develop efficient transformation and inverse
transformation from action angle frame of particles to field
coordinate variables
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