The role of plasma response on fast ion losses induced by applied 3D fields in the ASDEX Upgrade and DIII-D tokamaks

M. Garcia-Munoz⁽¹⁾,

J. Galdon⁽¹⁾, L. Sanchis-Sanchez⁽¹⁾, X. Chen⁽²⁾, M. C. Dunne⁽³⁾, N. M. Ferraro⁽²⁾, J. Hanson⁽⁴⁾, W. W. Heidbrink⁽⁵⁾, G. Kramer⁽⁶⁾, Y. Q. Liu⁽⁷⁾, M. Nocente⁽⁸⁾, D. Orlov⁽⁹⁾, D. C. Pace⁽²⁾, C. Paz-Soldan⁽²⁾, M. Rodriguez-Ramos⁽¹⁾, D. Ryan⁽⁷⁾, A. Snicker⁽³⁾, W. Suttrop⁽³⁾, M. A. Van Zeeland⁽²⁾, E. Viezzer⁽¹⁾ and the ASDEX Upgrade, DIII-D and EUROfusion MST1 Teams

⁽¹⁾FAMN Department, Faculty of Physics, University of Seville, 41012 Seville, Spain, ⁽²⁾General Atomics, PO Box 85608 San Diego, California 92186-5608, USA, ⁽³⁾Max-Planck-Institut für Plasmaphysik, D-85748, Germany,⁽⁴⁾Columbia University, New York, 10027, USA ⁽⁵⁾University of California at Irvine, Irvine, California 92697, USA, ⁽⁶⁾Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543-0451, USA, ⁽⁷⁾CCFE, Culham Science Centre, Abingdon, OX14 3DB, UK, ⁽⁸⁾Dipartimento di Fisica 'G. Occhialini', Universita degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126, Milano, Italy, ⁽⁹⁾University of California San Diego, 9500, California 92093-0417, USA

3D Fields Used to Control ELMs Can Cause Intense and Localized Fast-Ion Losses

- Simulations show ELM mitigation coils (using vacuum fields) can cause up to 25% of NBI losses in ITER* reducing
 - Heating/current drive efficiency
 - Device safety (wall damage)
- Plasma response to applied 3D fields play important role in ELM suppression mechanism^{**}

*K. Shinohara, et.al., NF **51** 063028 (2011) *T. Koskela et al., PPCF **54** 105008 (2012) **C. Paz-Soldan et al., PRL **114**, 105001 (2015)

1.5

AUG

3D Fields Used to Control ELMs Can Cause Intense and Localized Fast-Ion Losses

- Simulations show ELM mitigation coils (using vacuum fields) can cause up to 25% of NBI losses in ITER* reducing
 - Heating/current drive efficiency
 - Device safety (wall damage)

 Plasma response to applied 3D fields play important role in ELM suppression mechanism^{**}

How does the plasma response affect the fast-ion confinement?

*K. Shinohara, et.al., NF **51** 063028 (2011) *T. Koskela et al., PPCF **54** 105008 (2012) **C. Paz-Soldan et al., PRL **114**, 105001 (2015)

Plasma Response to Applied 3D Fields Studied Varying 3D Field Poloidal Spectrum at Different β_N

• 3D fields poloidal spectrum modified by applying a toroidal phase difference between the upper and lower coil sets, $\Delta \Phi_{UL} = \Phi_{upper} - \Phi_{lower}$

Outline

- Direct measurement of fast-ion orbit displacement induced by the applied 3D fields in DIII-D
- Impact of 3D fields poloidal spectrum on plasma response and fast-ion losses
 - ➢ in DIII-D
 - in AUG
- Edge Resonant Transport Layer
- Conclusions

Outline

- Direct measurement of fast-ion orbit displacement induced by the applied 3D fields in DIII-D
- Impact of 3D fields poloidal spectrum on plasma response and fast-ion losses
 - > in DIII-D
 - > in AUG
- Edge Resonant Transport Layer
- Conclusions

Light Ion Beam Probe (LIBP*) Technique Provides Fast-Ion Kick Given by 3D Fields

 Similarly to Heavy Ion Beam Probe (HIBP) technique LIBP infer local perturbation strength using barely confined NBI ions

 $\xi \rightarrow \text{Radial kick (displacement)}$

 $\Delta F \rightarrow$ Amplitude of fluctuating FILD signal

 $\overline{F} \rightarrow$ Amplitude of the unperturbed losses at FILD

 $L_i \rightarrow$ Ionization scale length at orbit birth position

* Xi Chen et al., RSI'14

Orbit Displacement Induced by 3D Fields Shows Linear Dependency On Plasma Response to Applied 3D Fields

- Fast-ion kick loss studied for two different $\Delta \Phi_{UL}$ and wide β_N range
- Fast-ion kicks by 3D fields can be up to 3 cm

Outline

- Direct measurement of fast-ion orbit displacement induced by the applied 3D fields in DIII-D
- Impact of 3D fields poloidal spectrum on plasma response and fast-ion losses
 - ➢ in DIII-D
 - in AUG
- Edge Resonant Transport Layer
- Conclusions

ΔΦ_{UL} Continuous Scan Shows 15% Variation in Fast-Ion Losses

- Plasma response and fast-ion losses depend strongly on applied poloidal spectrum
- Slight phase shift, ~40°, between measured losses and magnetic response
 - Resonant spectrum for thermal plasma and fastions might not be the same
- SPIRAL simulates fast-ion losses in M3D-C1 fields using realistic NBI distribution

 $\Delta \Phi_{III}(^{\circ})$

1.0

0

#1657

SPIRAL

FILD Measurements Help Identifying Orbit Topology of Fast-Ion Losses Induced by 3D Fields

 Maximum losses appear at well defined pitch-angle and broad energy

FILD Measurements Help Identifying Orbit Topology of Fast-Ion Losses Induced by 3D Fields

- Maximum losses appear at well defined pitch-angle and broad energy
- Losses are on trapped orbits exploring pedestal / SOL

M. Garcia-Munoz | IAEA FEC | Kyoto, Japan | October 2016 | Page 13

Poloidal Spectrum of 3D Fields Has Strong Impact on Fast-Ion Toroidal Canonical Momentum (P_{ϕ})

- SPIRAL used to calculate δP_φ due to applied 3D fields including M3D-C1 plasma response and collisions
- Fast-ion δP_{Φ} depends strongly on $\Delta \Phi_{UL}$
 - Large δP_{Φ} for $\Delta \Phi_{UL} = 90-100^{\circ}$
 - Negligible δP_{Φ} for $\Delta \Phi_{UL} = 200^{\circ}$

Companion Experiments in AUG Show Fast-Ion Losses Induced by 3D Fields in Narrow Poloidal Spectrum Range

- In ELMy, high β_N, low collisionality and q₉₅ H-mode plasma
- Poloidal spectrum of n=2 3D fields is continuously modified by varying ΔΦ_{UL}
- Density pump-out and partial ELM mitigation observed as soon as coils are ON
- Clear dependency of ELM activity, density pump-out and fast-ion losses on 3D fields poloidal spectrum

Companion Experiments in AUG Show Fast-Ion Losses Induced by 3D Fields in Narrow Poloidal Spectrum Range

- In ELMy, high β_N, low collisionality and q₉₅ H-mode plasma
- Poloidal spectrum of n=2 3D fields is continuously modified by varying ΔΦ_{UL}
- Density pump-out and partial ELM mitigation observed as soon as coils are ON
- Clear dependency of ELM activity, density pump-out and fast-ion losses on 3D fields poloidal spectrum

3.0 AUG #33143 4 2.5 $n_{c}^{c}(10^{19} \text{ m}^{-2})$ 2.0 1.5 1.0 0.5 FILD (a. 0.0 **ELM Monitor** 180 $\Delta \Phi_{UL}(^{\circ})$ 90 -90 -180 2.0 2.5 3.0 3.5 Time (s)

Simulations Predict Strong Dependency of Fast-Ion Losses On 3D Fields Spatial Structure

 Orbit simulations using n=2 MARS-F fields reproduce ΔΦ_{UL} (poloidal spectrum) dependency

M. Garcia-Munoz | IAEA FEC | Kyoto, Japan | October 2016 | Page 17

Simulations Predict Strong Dependency of Fast-Ion Losses On 3D Fields Spatial Structure

- Orbit simulations using n=2 MARS-F fields reproduce ΔΦ_{UL} (poloidal spectrum) dependency
- Additional 3D fields toroidal harmonics have some impact on total losses

M. Garcia-Munoz | IAEA FEC | Kyoto, Japan | October 2016 | Page 18

Simulations Predict Strong Dependency of Fast-Ion Losses On 3D Fields Spatial Structure

- Orbit simulations using n=2 MARS-F fields reproduce ΔΦ_{UL} (poloidal spectrum) dependency
- Additional 3D fields toroidal harmonics have some impact on total losses
- Plasma response and associated fast-ion losses changes with poloidal spectrum
 - Fast-ions are sensitive to perturbation amplification / shielding

Simulations Reproduce FILD Measurements in Narrow ΔΦ_{UL} Range

- Orbit simulations using n=2 MARS-F fields reproduce ΔΦ_{UL} (poloidal spectrum) dependency
- Additional 3D fields toroidal harmonics have some impact on total losses
- Plasma response and associated fast-ion losses changes with poloidal spectrum
 - Fast-ions are sensitive to perturbation amplification / shielding

FILD Measurements Help Identifying Orbit Topology of Fast-Ion Losses Induced by 3D Fields

 Maximum losses appear at well defined energy and three different pitch-angles

FILD Measurements Help Identifying Orbit Topology of Fast-Ion Losses Induced by 3D Fields

ASDEX Upgrade

- Maximum losses appear at well defined energy and three different pitch-angles
- Losses are on trapped orbits exploring pedestal / SOL

Outline

- Direct measurement of fast-ion orbit displacement induced by the applied 3D fields in DIII-D
- Impact of 3D fields poloidal spectrum on plasma response and fast-ion losses

> in DIII-D

> in AUG

- Edge Resonant Transport Layer
- Conclusions

Calculations of Fast-Ion δP_{ϕ} due to 3D Fields Reveal Transport is Resonant and Localized Around Separatrix

- ASCOT is used to calculate fast-ion δP_Φ for all ΔΦ_{UL} using realistic NBI distribution
- MARS-F n=2+6 3D fields
- No TF-ripple
- No collisions
- Realistic 3D wall

$$\begin{array}{c}
 & & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 &$$

 $\delta P_{\Phi} < 0$ (blue-black) \rightarrow outwards transport

 δP_{Φ} > 0 (yellow-white) \rightarrow inwards transport

 $P_{\phi} = mRv_{\phi} - Ze\Psi_{r}$

Calculations of Fast-Ion δP_{ϕ} due to 3D Fields Reveal Transport is Resonant and Localized Around Separatrix

Orbital resonances intrinsic to magnetic background

 $\omega_{pol}/\omega_{tor}=n/p$

perfectly match δP_{Φ} regions

- Maximum transport caused by resonance overlap
- Fractional resonances* seem to play important role
- Poloidal spectrum determines in/outwards transport

*G. Kramer et al., Phys. Rev. Lett. 109 035003 (2012)

δP_o(a.u.) 3 90 2 80 70 E (keV) 0 60 $\omega_{pol}/\omega_{tor}=n/p$ 50 -1 40 -2 30 $\Delta \Phi_{iii} = 40^{\circ}$ Separatrix -3 1.8 2.0 2.1 1.9 2.2 R (m)

 $\delta P_{\Phi} < 0$ (blue-black) \rightarrow outwards transport $\delta P_{\Phi} > 0$ (yellow-white) \rightarrow inwards transport

 $P_{\phi} = mRv_{\phi} - Ze\Psi_{p}$

Calculations of Fast-Ion δP_{ϕ} due to 3D Fields Reveal Transport is Resonant and Localized Around Separatrix

Orbital resonances intrinsic to magnetic background

 $\omega_{pol}/\omega_{tor}=n/p$

perfectly match δP_{Φ} regions

- Maximum transport caused by resonance overlap
- Fractional resonances* seem to play important role
- Poloidal spectrum determines in/outwards transport

ASDEX Upgrade

*G. Kramer et al., Phys. Rev. Lett. 109 035003 (2012)

Edge peeling response has strong impact on fast-ion transport due to Edge Resonant Transport Layer

Plasma Response to Applied 3D Fields Modifies

 $\Delta \phi_{UL} = 40^{\circ}$

 Internal kink response causes enhanced local transport due to internal resonance

Fast-Ion Transport Locally

 δP_{ϕ} (10⁻¹⁶ kg m s⁻¹)

۲

 $\delta P_{\phi} < 0$ (blue-black) \rightarrow outwards transport

 $\delta P_{\Phi} > 0$ (yellow-white) \rightarrow inwards transport

Outline

- Direct measurement of fast-ion orbit displacement induced by the applied 3D fields in DIII-D
- Impact of 3D fields poloidal spectrum on plasma response and fast-ion losses

> in DIII-D

> in AUG

- Edge Resonant Transport Layer
- Conclusions

Conclusions

- Joint experiments at AUG and DIII-D show that fast-ions are extremely sensitive to externally applied 3D fields and their:
 - Poloidal spectrum
 - Toroidal spectrum
 - Plasma response
- In AUG, orbital resonances intrinsic to magnetic background are responsible for observed losses
- Fast-ion δP_Φ due to 3D fields reveals existence of Edge Resonant Transport Layer (ERTL)
- ERTL properties may help optimizing 3D fields structure in present and future devices

BackUp

Edge Peeling Amplification Has Stronger Impact on Total Losses Than Internal Kink Amplification

- Strong peeling response at $\Delta \Phi_{UL}=0^{\circ}$ leads to slight amplification of total losses
- Internal kink amplification at $\Delta \Phi_{UL}$ =180° does not modify significantly total losses

Resonant Ion with 3D Fields

Toroidal Symmetry Does Not Balance Radial Transport in ERTL

ERTL radial profile prevents toroidal symmetry to balance radial transport

E_r Makes ERTL Wider

 E_r evaluated using radial force balance, assuming neoclassical poloidal rotation

Resonances Over a Broad Range of Pitch Angles

