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1 Introduction

Gyrokinetic simulations have come to be the standard of current turbulence modelling in
the low gradient, nearly collisionless region in the core of tokamak discharges, since they
include nearly all the kinetic effects to be expected for a small ratio of the turbulence
to the Larmor frequency [1]. On the other hand, fluid turbulence computations allow
much higher spatial resolution, become more reliable at large collision frequency, can be
adapted to non-Boussinesq scenarios and tend to yield more physical insight than fully
kinetic simulations. The large ratios of domain size to vortex diameter accessible by fluid
simulations are also relevant to the study of deterministic zonal flow (ZF) interactions.
At present the full nonlinearities that become relevant at the notoriously difficult edge
region of tokamaks due to the high fluctuation amplitude cannot be implemented in a gy-
rokinetic framework. In addition the high collision numbers at the edge make gyrokinetic
simulations numerically and physically challenging.

To allow a more reliable operation of both approaches in their respective fringe regions
of validity and applicability, and to isolate special kinetic effects from the more robust
fluid physics, results on ZF [2] and geodesic acoustic modes (GAM) [3, 4, 5] obtained with
the non-local two-fluid Braginskii code NLET have been compared with gyrokinetic code
simulations. The specific study of the global flows is of particular interest, with a view
towards an eventual understanding of the L/H transition and the associated edge flows.

2 Geodesic acoustic modes

In non-marginal regions, far from instability thresholds, the results of the fluid code are
in rather good agreement with the kinetic results, even if the collisions are scarce. This
can be understood, because at sufficiently large growth rates, the resonances responsible
for fine phase space structures become sufficiently wide to allow a representation by fluid
moments of the distribution functions.

For example for the parameters ǫn = 2Ln/R = 0.08 ⇔ R/Ln = 25, ηi = Ln/LT i = 3,
q = 3.2, ǫ = a/R = 0.2, q = 3.2 in the core/edge transitional regime and for collisionless
ions and adiabatic electrons the ITG modes are far above the threshold for the fluid as well
as the kinetic model. In addition the typical mode frequencies of order of the diamagnetic
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FIG. 1: Figure a and b, respectively, show the profiles of the flux surfaced averaged flow
velocity as a function of minor radius and time for the gyrokinetic and the fluid code
runs in the core/edge transitional regime, while inset c and d show snapshots of the flow
profiles at t = 21 and t = 28. For better visual comparison, for the fluid run only half the
radial domain is shown. (The actually used radial domain width was twice the one in the
gyrokinetic code.)
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frequency are larger then the magnetic drift frequencies by a ratio of order ǫ−1

n . The
diamagnetic frequency is also much larger then the parallel ion sound transit time by a
ratio 4πqǫ−1

n – in other words, the turbulence is strongly supersonic. This rules out a large
contribution from resonant particle populations due to parallel or perpendicular drifts.

A comparison of the GAM oscillations of the flux surface averaged poloidal velocity for
these parameters is shown in figure 1 using the gyrokinetic GYRO [8] and the two-fluid
NLET [9] code. The amplitude, pattern, time- and length-scales of the flows agree rather
well, indicating that kinetic effects due to higher moments of the distribution function
(which are absent in the fluid code) are unimportant in this scenario.

Also the heat flux modulation seen ubiquitously in fluid GAM/turbulence simulations
[7] can be observed in the gyrokinetic runs (fig. 2). It is noteworthy, that in both cases
the transport maxima are in phase with the poloidal flow velocity, where the electron
diamagnetic direction counts as positive.

3 Zonal Flows

A pronounced feature of the ZFs in many fluid runs [10] is a slowly, nearly deterministically
evolving flow, which is maintained by the perpendicular Reynolds stress and braked by
the parallel stress acting on the associated m = 1 return flow. The return flow contains
the dominant part of the kinetic energy [2]. Gyrokinetic simulations so far have not
emphasized the deterministic nature of this flow, as they have focused mostly on the
transport level.

A particular challenge of matching fluid and gyrokinetic simulations is the fact that
fluid simulations do not depend on the aspect ratio ǫ = a/R. An obvious way how this
might matter in gyrokinetic simulations is via the banana neoclassical enhancement of the
polarizability associated with the ZFs, ρeff/ρ = 1+1.6q2/

√
ǫ, for circular low aspect ratio

discharges. This must be compared to the fluid neoclassical enhancement ρeff/ρ = 1+2q2.
It seems at first, that particularly low values of ǫ might leed to large kinetic deviations
from the fluid behavior. This is however attenuated by the fact that the bounce period of
the ions causing the increased polarizability also becomes very long for small ǫ. These ions
become irrelevant, as soon as the setup time of the flows due to the turbulence becomes
shorter than their bounce period. For particularly large ǫ on the other hand, the kinetic
value for the polarizability is limited below by the fluid value, since that value corresponds
to the sole contribution of the parallel velocity moment to the kinetic energy of the flows.

For the parameters ǫn = 1, Ln/LT = ηi = 2.4, q = 1.5, ǫ = a/R = 0.2 the time evolu-
tion of the flow profiles in a gyrokinetic turbulence simulation are shown in figure 3a-d.
The radial scale (flow wavelength of about 80ρs is apparently independent of the radial
domain width and the peak flow amplitude about 0.8vdia. The flow velocity agrees ap-
proximately with the corresponding fluid value, while the radial scale length is somewhat
larger.

To really observe deterministic behavior of the flows the poloidal domain width is
clearly not enough. However switching to a larger ǫ = 0.4 results already in a nearly
deterministic flow behavior at unchanged domain. Interestingly, in this case the flow
amplitude and the scale length approximately agree with the fluid results, which is un-
derstandable, since the neoclassical inertia is closer to the limiting fluid one.
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FIG. 2: Figure a and b, respectively, show the profiles of the flux surfaced averaged radial
heat flux as a function of minor radius and time for the gyrokinetic and the fluid code
runs in the core/edge transitional regime. (Note the different scaling of the radial axis.)
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FIG. 3: Figure a and b, respectively, show the profile of the flux surfaced averaged flow
velocity as a function of minor radius and time and at t = 3280 for a gyrokinetic run
with stationary ZFs for ǫ = a/R = 0.2 for a perpendicular computational domain of
107ρs × 168ρs, and for figure c and d, respectively for a domain of 213ρs × 168ρs Figure
e and f show the same flux surface average profiles and snap shots for ǫ = a/R = 0.4 for
a domain of 107ρs × 168ρs.
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4 Conclusions

The comparisons show that ZFs are generated similarly by a Reynolds stress based self
amplification and interact with the turbulence modes through wave kinetic effects, while
GAMs mostly result from a modulation of the background diamagnetic velocity. Several
prior results from the fluid code have been confirmed with the gyrokinetic codes, such as
near-deterministic flow evolution for large enough domain sizes, turbulence modulation
by GAMs, and stationary behavior of slab-drift-wave generated ZFs.

An important cave-at raised by the comparisons is that particular care has to be taken
with the physics and numerics of the collision operator used in the gyrokinetic codes, so
that the proper fluid limit is eventually reached for high collisionalities. On the other hand,
the gyrokinetic results can guide the proper renormalization of the fluid dissipative terms
to account for the kinetic damping mechanisms (Landau-damping and phase-mixing) to
prevent a partial break-down of the fluid description at the lower collisionalities.

Major differences in the flows are caused by the collisionless modifications to the neo-
classical polarizability due to ion trapping. These effects tend to be negligible, if either
the aspect ratio or the ratio of turbulent diffusion time versus the ion bounce period
is small. The deviations due to the non-adiabatic electron behavior due to trapping in
the kinetic code become less important for the high collision numbers often encountered
approaching the edge. Lastly, at perpendicular wave-lengths of the order of the ion gyro-
radius there are deviations due to the fluid ion polarizability (if the turbulence saturates
by inertial and not other dissipative effects). In principle, this requires correction terms
to the fluid ion inertia, but becomes less important in non-marginal situations, where the
turbulence is dominated by large scale modes. Interestingly the fluid polarization term
becomes correct again at very high wave-numbers, where the ions become adiabatic in
both frameworks.

The regions of validity and renormalizations of the fluid and gyrokinetic codes outlined
by the present paper can be used to study regions close to the edge, where the gyrokinetic
ordering breaks down, such as near the L/H transition or the density limit, and are a
valuable sanity check for both approaches. Lastly, the presented results improve the
understanding of the physics when kinetic phenomena can be reproduced in first principle
fluid codes.
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