3-D Modeling of Heat Transport in Wendelstein 7-X Startup Plasmas with EMC3-EIRENE

<u>F. Effenberg^{1*}</u>, Y. Feng², O. Schmitz¹, S. A. Bozhenkov², H. Frerichs¹, J. Geiger², H. Hölbe², M. Jakubowski², R. König²,

M. Krychowiak², H. Niemann², T. Sunn Pedersen², D. Reiter³, L. Stephey⁴, G. A. Wurden⁵ & W7-X Team²

¹ Department for Engineering Physics, University of Wisconsin – Madison, WI 53706, USA ² Max-Planck-Institut für Plasmaphysik, Association EURATOM-IPP, 17491 Greifswald, Germany ³ IEK-4, Forschungszentrum Jülich GmbH, Association EURATOM-FZJ, 52425 Jülich, Germany ⁴ HSX Plasma Laboratory, University of Wisconsin - Madison, WI 53706, USA ⁵ Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545, USA EUROfusion

* <u>Contact</u>: effenberg@wisc.edu

First operational phase (OP1.1): five graphite inboard limiters define a 3D helical scrape off layer (SOL)

SOL magnetic topology decomposes into three types of helical magnetic flux tubes of different lengths Lc

Conclusion:

UNIVERSITY OF WISCONSIN-MADISON

Startup field configuration facilitates the investigation of links between PSI and magnetic topology \rightarrow 3D modeling and measurement show a strong correlation Near and far SOL feature different heat flux characteristics - Heat flux characteristic shows scaling of $\lambda_{all} \sim D_{\perp}^{\delta}$, δ =0.35-0.5 and $q_{\parallel,peak} \sim D_{\perp}^{\varepsilon}$, ε ~-0.5 Downstream power width λ_{rm} related to upstream T_e decay $\lambda_{Te.up}$ by scaling factor of 2.5-3.5 Seeded impurities concentrate in longest flux tubes, stronger accumulation for increased and clear sub-confinement expected for considered 5/5 standard island divertor scenario

Ackowledgments:

This work was supported in part by the U.S. Department of Energy (DoE) under grant DE-SC0014210 and by start up funds of the Department of Engineering Physics and of the College of Nuclear Engineering at the University of Wisconsin - Madison, USA.

This research was performed using the computer resources and assistance of the UW-Madison Center For High Throughput Computing (CHTC) and the high performance computing system "Hydra" of the Max-Planck-Society at Rechenzentrum Garching (RZG).

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the **Euratom research and training programme 2014-2018** under grant agreement No **633053**. The views and opinions expressed herein do not necessarily reflect those of the European Commission.