

Role of stationary zonal flows and momentum transport for L-H transitions in JET

26th IAEA Fusion Energy Conference Kyoto, Japan – October 17-22, 2016

Presented by

J.C. Hillesheim

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Contributors

J.C. Hillesheim¹, E. Delabie², E. R. Solano³, C. F. Maggi¹, H. Meyer¹, F. Rimini¹, I. Carvalho⁴, I. Nunes⁴, M. Barnes^{5,1}, E. Lerche⁶, M. Stamp¹, A. Drenik⁷, M. Mantsinen^{8,9}, C. Challis¹, J. Buchanan¹, F.I. Parra^{5,1}, L. Meneses⁴, E. Poli⁷, J. Hobirk⁷, and JET Contributors^{*}

EUROfusion Consortium JET, Culham Science Centre, Abingdon, OX14 3DB, UK

- ¹ CCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK
- ²Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- ³ Laboratorio Nacional de Fusion, CIEMAT, Madrid, Spain
- ⁴ Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- ⁵ University of Oxford, UK
- ⁶ LPP-ERM/KMS, Association EUROFUSION-Belgian State, TEC partner, Brussels, Belgium
- ⁷ Max-Planck-institut fur Plasmaphysik, Garching, Germany
- ⁸ Barcelona Supercomputing Center, Barcelona, Spain
- ⁹ ICREA, Barcelona, Spain

*See the author list of ``Overview of the JET results in support to ITER" by X. Litaudon et al. to be published in Nuclear Fusion Special issue: overview and summary reports from the 26th Fusion Energy Conference (Kyoto, Japan, 17-22 October 2016)

Power Threshold to Access H-mode Remains a Significant Uncertainty for ITER

- Work on L-H transition physics in JET-ILW:
 - Maggi NF 2014, Delabie EPS 2014, Delabie IAEA 2014, Meyer EPS 2014, Hillesheim PRL 2016
- Factors known to impact threshold not included in scaling law include
 - Rotation, divertor configuration, X-point height, connection length, low density branch, and others

J.C. Hillesheim | IAEA FEC 2016 | Kyoto | October 20, 2016 | Page 3

Outline

- L-H transition power threshold results at high magnetic field and plasma current in JET
- Scaling of zonal flow properties and comparison to width of edge radial electric field well
- Momentum transport during L-H transitions
 - Comparison to linear and non-linear gyrokinetic simulations
- Recent results in hydrogen/deuterium mixtures

Outline

- L-H transition power threshold results at high magnetic field and plasma current in JET
- Scaling of zonal flow properties and comparison to width of edge radial electric field well
- Momentum transport during L-H transitions
 - Comparison to linear and non-linear gyrokinetic simulations
- Recent results in hydrogen/deuterium mixtures

Density, current, and magnetic field scans performed in L-H transition experiments

- Same divertor configuration used for baseline and hybrid scenarios
- Slow power ramp to identify L-H transitions
- Excellent density control in plasma current and magnetic field scans
- Scans of Bt (3-3.4 T) and Ip (2.2-3.2 MA) covering $q_{95} \approx 2.7 4.0$ at low (~ $2.0 2.3 \times 10^{19} m^{-3}$) and high density (~ $3.2 3.3 \times 10^{19} m^{-3}$)

Dependence on plasma current characterized

6

scaling law prediction

J.C. Hillesheim | IAEA FEC 2016 | Kyoto | October 20, 2016 | Page 7

2

4 Pscal (MW)

O

0

Outline

- L-H transition power threshold results at high magnetic field and plasma current in JET
- Scaling of zonal flow properties and comparison to width of edge radial electric field well
- Momentum transport during L-H transitions
 - Comparison to linear and non-linear gyrokinetic simulations
- Recent results in hydrogen/deuterium mixtures

Doppler backscattering measures the radially-localized lab frame velocity and density fluctuation level

Starting during 2015 campaign, DBS measurements now routine in JET

- A refraction-localized scattering region is created near the cutoff
- Amplitude of backscattered signal related to fluctuation level of density fluctuations
- Doppler shift in backscattered signal induced by lab frame velocity of the turbulence

$$\omega_D \approx k_\perp v_{Lab}$$
$$v_{Lab} = v_{E \times B} + \widetilde{v}$$

- TORBEAM used to determine scattering position and wavenumber
 - $k_\perp \approx 3 5 \ cm^{-1}$

Comparison between DBS and CXRS in L-mode

- DBS profiles built up with 2 tunable channels over ~200 ms
- Spline fits performed to CXRS components from carbon impurity to calculate E_r
- Comparison between CXRS and DBS implies $0 < v_{ph} < v_{dia,e}$ in L-mode well region
 - Later linear gyrokinetic calculations consistent with modes propagating in electron direction
- All later DBS profiles assume $v_{ph} = 0$

J.C. Hillesheim | IAEA FEC 2016 | Kyoto | October 20, 2016 | Page 10

Fine-scale structure in E_r profile consistent with zonal flows observed at bottom of edge well

- Wavelength of zonal flow structures varies with density
- Zonal flows stationary in time
- Small experiments at larger ρ^* have observed variety of oscillatory ZF, but not stationary ZF
 - Conway PRL 2011, Estrada PRL 2011, Xu PRL 2011, Schmitz PRL 2012, Tynan NF 2013

Measurements from Ohmic to L-mode to Hmode show differences with density

- Simultaneous collapse of density fluctuation levels, turbulence phase velocity, and zonal flows across transition in high density branch, but not low density branch
 - Hillesheim PRL 2016
- No clear 'smoking gun' relating stationary ZF to transition 'trigger'

J.C. Hillesheim | IAEA FEC 2016 | Kyoto | October 20, 2016 | Page 12

Data with periodic zonal flow structures used to characterize local parameter dependencies

- ZF wavelength correlates with radial correlation length of turbulence
 - $k_{ZF}l_r \approx 2.3$
- Radial correlation length much smaller than well width
 - $w_{E_r} \sim 5-8 \text{ cm}$
- When stationary ZF are observed, $\frac{\ell_r}{w_{E_r}} \ll 1$

Width of radial electric field well varies in plasma current scan

- Plasma current increased ~50% and edge temperature approximately doubles in Ip scan at 3 T, such that banana orbit width changes only marginally
 - T_e=T_i within uncertainties in similar conditions where CXRS available
- Independent variation of E_r well width and radial correlation length may play role as effective ρ^* development of the edge transport barrier
 - May explain why stationary zonal flows observed in JET, but not in smaller experiments

Outline

- L-H transition power threshold results at high magnetic field and plasma current in JET
- Scaling of zonal flow properties and comparison to width of edge radial electric field well
- Momentum transport during L-H transitions
 - Comparison to linear and non-linear gyrokinetic simulations
- Recent results in hydrogen/deuterium mixtures

In region where E_r dominated by toroidal rotation, flow builds into core at constant gradient value

- Dashed lines at same constant slope
- Critical gradient behavior expected for temperature gradients, but surprising for rotation

J.C. Hillesheim | IAEA FEC 2016 | Kyoto | October 20, 2016 | Page 16

Linear GS2 growth rate calculations performed in edge

- Propagation direction in electron diamagnetic direction at bottom of well, consistent with DBS vs CXRS comparisons
- Large growth rates across broad wavenumber range
 - Multi-scale effects could be important
- Growth rates insensitive to flow shear, no linear critical gradient

Non-linear gyrokinetic simulations used to investigate momentum transport close to plasma edge

- Momentum transport effects could explain apparent ۲ critical gradient behavior
 - Ratio of momentum to heat flux set by NBI input
 - $P_r = \chi_{\phi} / \chi_i \propto \frac{\partial T_i / \partial r}{\partial \Omega_{\phi} / \partial r} \frac{\Pi}{\Omega_i}$ Temperature held at critical gradient
 - Prandtl number constant ٠
 - If above conditions are met, rotation gradient also held constant
- Long wavelengths only, with hyperviscosity
 - $0.02 < k_{\theta} \rho_i < 0.94$
- Kinetic ions and electrons
 - Electrostatic, full GS2 collision operator
- For radius $\sqrt{\psi} = 0.93$, shot 86470, where rotation gradient builds up

Non-linear consistency relation can explain apparent critical gradient behavior

$$P_r\left(\frac{a}{L_{T_i}}, \gamma_E\right) \sim \frac{\partial T_i/\partial r}{\partial \Omega_{\phi}/\partial r} \frac{\Pi}{Q_i}$$

- **Ion heat transport stiff**, GS2 overpredicts experimental values of Qi, Π
 - Multi-scale effects could be important
- Flux ratio set by **NBI** & well matched by simulation
- Prandtl number varies systematically over range ~0.5-0.8

J.C. Hillesheim | IAEA FEC 2016 | Kyoto | October 20, 2016 | Page 19

Outline

- L-H transition power threshold results at high magnetic field and plasma current in JET
- Scaling of zonal flow properties and comparison to width of edge radial electric field well
- Momentum transport during L-H transitions
 - Comparison to linear and non-linear gyrokinetic simulations
- Recent results in hydrogen/deuterium mixtures

Mass scaling of L-H transition

- Empirically P_{LH}~1/m_i
 - Consistent with results from multiple experiments
 - Righi NF 1999, Gohil IAEA 2012, Ryter NF 2013
- Very little existing results in mixed species plasmas
 - Results in 50/50 D-T plasmas were consistent with ~1/m_i
- Zonal flows have been suggested as being responsible for mass dependence through ion collisions

Power threshold studied in hydrogendeuterium mixtures in JET

- Slow, ~8 s, power ramps used to identify transition
- Same shape used for extensive mixture and isotope data set
- $Z_{eff} \approx 1.0 1.2$
- Minimum threshold moves to higher density due to stronger dependence in low density branch

Non-linear dependence of power threshold observed in mixed species plasmas

- Largest variations observed at high and low H/(H+D)
- Little variation in range $0.2 < \frac{H}{(H+D)} < 0.8$
- Experiments at end of campaign with H-⁴He mixtures show drop of power threshold with helium seeding in hydrogen plasmas
 - Effect could be used during nonactive phase of ITER operation

Summary

- Fine-scale structure in edge flows consistent with stationary zonal flows observed during L-H transitions in JET & can vary independently of well width
- Radial correlation length of turbulence much smaller than well width, $\frac{\ell_r}{w_{E_r}} \ll 1$, which may be important effective ρ^* for development of edge transport barrier
 - Planned diagnostic upgrades at JET will allow DBS measurements at lower magnetic field in future, enabling this to be tested
- Momentum transport limits development of inner shear layer of well
 - Non-linear gyrokinetic simulations show consistency relation between
 momentum and heat flux can explain apparent critical gradient
 - Implies in strongly driven regime that Π/Q_i (e.g. NBI voltage) can act as control knob for rotation shear
- Non-linear dependence of P_{LH} in mixed species plasmas
 - Reduction of P_{LH} in H-⁴He mixture shows potential path to access Hmode in hydrogen during non-active phase of ITER operation

Extras

L-H transition time traces

L-H threshold on density characterized in three divertor configurations

- 3 T/2.5 MA in C/C and VT; 3 T/2.5-2.75 MA in HT
 - C/C shape used for hybrid and baseline scenario development
- Power threshold lowest in horizontal target
- Threshold similar in C/C and VT, even though pumping and X-point height very different
- Note: Core P_{rad} estimated from weighted bolometer chord average; tomographic inversions may modify results

Variation in edge profiles in different divertor configurations, both at 3 T/ 2.5 MA

- Edge well shallower in C/C in Ohmic conditions
- Fine-scale zonal flow structure in E_r profile coincident with steeper density gradient in C/C
- Small experiments have observed variety of oscillatory ZF, but not stationary
 - e.g. Conway PRL 2011, Estrada PRL 2011, Xu PRL 2011, Schmitz PRL 2012

Strong dependence on heating source in hydrogen, but not deuterium

- Similar to Gohil NF 2010, threshold much higher in hydrogen with more input torque
- Power threshold so low in deuterium that NBI provides little momentum input

Dependence on divertor configuration

- VT and corner, with different X-point height and pumping efficiency have similar threshold
- V5OH has lower threshold

3.60 3.65 3.75 3.80 3.70

Edge temperatures within uncertainties for ions and electrons

- 90742: 3.4 T/ 3.2 T
 - $< n_e > = 2.2 \text{ m}^{-3}$
- High field, high current, low density
 - Extreme case where one might ٠ expect separation of temperatures
- $T_e = T_i$ within uncertainties during time leading up to L-H transition

Hydrogen-deuterium mixture scan performed in high density branch

- Multiple H/(H+D) ratio measurements consistent
- Neutron rate consistent with square of thermal deuterium density over broad range

J.C. Hillesheim | IAEA FEC 2016 | Kyoto | October 20, 2016 | Page 32

H/(H+D) measurements

