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 Introduction : W transport and control in present 

 experiments and ITER  objectives of study 

 

 Simulations of core W transport in ITER 

 15 MA/5.3T QDT ~ 10 plasmas 

 7.5 MA/2.65T DT and DD plasmas 

 H-mode termination 

 

 Conclusions 

Outline 



Page 3 A. Loarte  – 26th IAEA Fusion Energy Conference – Kyoto – 20 – 10 –  2016 

 Control of  W concentration in ITER scenarios (stationary phases and L-H/ 

H-L confinement transients) is essential to achieve QDT = 10 goal and to 

maintain low plasma disruptivity 

 Excessive W levels in core plasma leads to high radiation levels, loss of the 

H-mode and, eventually, to disruptions 

Introduction - I  

P. de Vries PPCF 2012 

Multi-machine analysis of 

termination scenarios 

EX/P6-41, P. de Vries 
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 Control of W in H-modes in present experiments and ITER: 

1. Control of W source by operating in high density/low temperature conditions at the 

divertor  control of W source 

2. Control of W penetration through the edge plasma into the core plasma (Pedestal 

transport + ELM control)  control of nW-ped 

3. Control of core W transport  avoidance of core W accumulation (control of core 

𝛻𝑛 vs. 𝛻𝑇 & core transport by central heating) 

Introduction - II  

JET –  J. Bucalossi – EPS 2012 Angioni – NF 2014 

ITER studies for 1 & 2 presented at FEC-2012, FEC-2014 and FEC-2016 (EX/P6-44 – A. Polevoi) 

ASDEX Upgrade – C. Angioni – TH/P2-6 
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Modelling of Core W transport in ITER  

 Objective  Model core W transport applying physics models used to 

describe present experiments :  
 Model W transport in ITER main plasma scenarios (steady-state and 

confinement transients H-L)  magnitude of possible W accumulation in ITER  

 Evaluate effects of physics effects known to affect core W transport in present 

experiments (toroidal rotation, fast particles ..) 

 Evaluate capabilities of ITER heating and fuelling systems for core W transport 

control and accumulation avoidance 

 Simulations of core W transport carried out with ASTRA and JINTRAC with 

GLF23 model for anomalous transport (without sawteeth)  

 SOL and pedestal plasma conditions evaluated from SOLPS and EPED 

models  

 ne,Te,Ti nW specified as boundary conditions with Dped,cped ~ (Pedge/PL-H) in 

H-L transitions 

 Low nW level to be able to model accumulation without plasma collapse 

 Core energy, particle + W transport : Anomalous + NCLASS transport 

 D = Dneo + Danom  & V = Vneo + Vanom   

 c = cneo + canom 

 Non self-consistent studies with NEO & TGLF of advanced physics effects 
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W transport in ITER Q = 10 Plasmas - I  
 ITER Q =10 (33 MW NBI + 20 MW of RF) 

 Main plasma and W transport is anomalous except in very centre (r/a ≤ 

0.2 m) where turbulent transport is ~ 0  as seen in AUG/JET/C-MOD 

 Extent of region with low anomalous transport dependent on central 

shear  
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anom ~ 0  flat W density profiles except possibly in 
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W transport in ITER Q = 10 Plasmas - II  

 Low core W peaking  very modest in ITER Q = 10 plasmas  

 Degree of W peaking depends on heating scheme and 

assumptions on core transport 
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W transport in ITER Q = 10 Plasmas - III  
 Low core W peaking due to low DT density gradients in the core    

very low 1 MeV NBI particle source in ITER 

 Core 𝛻𝑛  in ITER determined by transport physics not by NBI particle 

source  
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W transport in ITER Q = 10 Plasmas - IV  
Neoclassical transport studies carried out to determine physics of core 

D and T transport in ITER  

 Residual D + T core density peaking due to different ion masses 

 Net GD & GT are determined by balance of  outwards 𝐷𝛻𝑛 and inwards 

n𝑣 (>> GNBI) and have opposite directions  
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W transport in ITER 7.5 MA/2.65T Plasmas - I  

 Similar findings for Ip = 7.5 MA/2.65T DT plasmas that for Q = 10 

 Effects of additional heating schemes on W transport are stronger 

than for Q = 10 due to lack of Pa  
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W transport in ITER 7.5 MA/2.65 T Plasmas - II  

 Core W transport for Ip = 7.5 MA/2.65T DD plasmas is different that  

for DT due to lack of inwards neoclassical pinch in pure D plasmas 

 No W accumulation expected for DD plasmas due to low NBI particle 

source and lack on inwards pinch on D 
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Additional physics effects – Anomalous Transport   

 Inclusion of more sophisticated models of anomalous transport 

removes residual W peaking obtained with GLF23 

 TGLF including saturation for multi-scale turbulence leads to flattish 

W profiles where GLF23 predicts a small residual core peaking 
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 MDT  < 0.1 for Q = 10 ITER plasmas based on NBI source torque  

centrifugal effects on neoclassical W transport are small 

 Rotation effects on W transport modelled (not-self consistently) with NEO  

Similar findings as in Angioni NF 2014, PoP 2015  DW increases with MDT 

and VW/DW becomes less negative at high MDT  
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 Fast particle effects can affect W neoclassical transport 

Effects of fast particles on W neoclassical transport  
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 NBI ions/a particles: 1- 3.5 MeV have relatively  flat n + T profiles  no effects 

 He3  and fast-T with ICRH strong effects but radially dependent on He3-W 

collisionality and grad-THe3/grad Tfast-T  similar to JET and AUG results with  H-

minority (Casson PPCF 2015, TH/P2-6 Angioni )    
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Modelling of core W transport in H-mode terminations - I 

 ITER Q = 10 H-mode termination should be controlled to keep dW/dt as low 

 as possible (radial position and divertor power load control)  keep H-

 mode as long as possible 

 Optimization of Paux + Spellet ramps (+ gas fuelling) to avoid W accumulation 

r/a 

ne (1020 m-3) 

Ti (x 10 keV) 

nW/nW
ped 
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Modelling of core W transport in H-mode terminations - II 

 Radiative collapse of central plasma not reproduced in ITER Q = 10 

 terminations with W accumulation with realistic values of nW
ped/nped ~ 10-5 

 High core Te in Q=10 termination leads to low W radiation even with 

nW/ne ~ few 10-4 in the central plasma 
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Modelling of core W transport in H-mode terminations - III 

 Optimization is dependent on H-mode plasma conditions 

 Slow pellet fuelling ramp not always improves termination (7.5 MA/2.65T) 

 Lower Q = 5 15 MA/5.3T plasmas are more robust to W accumulation 

7.5 MA/2.65T 15 MA/5.3T  Q = 5  
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Conclusions 
 Modelling of core W transport shows favourable conditions that prevent 

strong core W accumulation in stationary ITER Q = 10 plasmas 

 Low core source from 1 MeV NBI  weak 𝛻nDT determined by transport 

 Core W transport in 7.5MA/2.65T DT plasmas similar to Q = 10 

 For DD plasmas core 𝛻nDD  hollow W profiles  

 W accumulation in H-mode transients (H-L transitions) can take place in 

ITER  optimization of heating and fuelling ramp-down required 

  Optimum fuelling/heating depends on H-mode conditions  

 Quantitative features on ITER simulations depend Plasma transport (thermal 

and main ion and impurities) in core region (low anomalous transport) 
 ITER core neoclassical transport is very low (DDT

neo ~ 10-2 m2s-1 and DW
neo ~  

10-3 m2s-1)  residual turbulence can dominate W transport (no accumulation) 

Further development of transport physics basis in central plasma region + 

experimental validation is required to refine predictions for ITER 

“Low energy” NBI plays major role in W accumulation in present experiments  

high core particle source, high toroidal rotation, dominant ion heating 

  JET – F. Köchl EX/P6-14 , ASDEX Upgrade – C. Angioni TH/P2-6, C-Mod – M. Reinke EX/P3-3 
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Reserve Material 
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W transport in ITER Q = 10 Plasmas - IIIr  
 Even if Pa /Paux ~ 2 for Q =10 ITER H&CD schemes can modify core 

plasma parameters  qaux >>  qa in central part for RF heating 

schemes 
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 Fast particle effects can affect W neoclassical transport 

Effects of fast particles on W neoclassical transport  
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 NBI ions/a particles: 1- 3.5 MeV have relatively  

flat n + T profiles  no effects 

 He3  and fast-T with ICRH strong effects but 

radially dependent on He3-W collisionality and 

grad-THe3/grad Tfast-T  similar to JET and AUG 

results with  H-minority (Casson PPCF 2015, TH/P2-

6 Angioni )    


