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Abstract:
Energetic particle driven geodesic acoustic mode (EGAM) in a 3-dimensional Large Helical
Device (LHD) equilibrium are investigated using MEGA code. MEGA is a hybrid simula-
tion code for energetic particles interacting with a magnetohydrodynamic (MHD) fluid. The
poloidal velocity oscillation is a combination of m/n = 0/0 (strong), 1/0 (medium) and 2/10
(weak) components. This is caused by the LHD configuration, different from the tokamak
case. The phenomena of chirping primary mode and the associated half-frequency secondary
mode are firstly reproduced with the realistic input parameters and 3-dimensional equilib-
rium. There are good agreements between simulation and experiment on the frequency
chirping of the primary mode, on the excitation of the half-frequency secondary mode, on
the mode profile, and on the phase lock. It is found that the bulk pressure perturbation
and the energetic particle pressure perturbation cancel out with each other, and thus the
frequency of the secondary mode is lower than the primary mode. Also, it is found that the
secondary mode is excited by the energetic particles, not by the nonlinear MHD coupling.

1 Introduction

Geodesic acoustic mode (GAM) is an oscillatory zonal flow coupled with density and
pressure perturbations in toroidal plasmas[I]. In the last decade, energetic particle driven
GAM (EGAM) is observed in Joint European Torus (JET), DIII-D, Large Helical De-
vice (LHD), and HL-2A. In the DIII-D experiment, drops in neutron emission follow the
EGAM bursts suggesting beam ion losses[2]. Also, in the LHD experiment, anomalous
bulk ion heating during the EGAM activity suggests a GAM channeling[3]. Then, un-
derstanding EGAM is important for magnetic confinement fusion where the energetic
particles need to be well confined and the bulk plasma need to be efficiently heated. The
EGAM has been studied extensively. It was demonstrated that the poloidal mode num-
ber of the EGAM is 0 for potential and 1 for density. Also, the EGAM is a global mode
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with the spatially uniform oscillation frequency. In addition, the EGAM frequency can be
lower or higher than the conventional GAM frequency under the different conditions[4].
The above demonstrations were made theoretically, computationally, and experimentally.

Recently, in LHD, an abrupt excitation of a half-frequency secondary mode was ob-
served when the frequency of a chirping primary EGAM reaches twice of the GAM
frequency[5]. The secondary mode is important because of its low frequency. The lower
frequency mode has a lower phase velocity, thus, this mode is more easily to interact
with the thermal ions and to transfer energy to them. Then, the plasma heating becomes
easier. Since the appearance of the secondary mode is related with the neutral beam
injection (NBI), the secondary mode may create an energy channel between the energetic
particles and the bulk plasmas. A 1-dimensional simulation with the kinetic energetic
particles and a nonlinear coupling coefficient between the primary and secondary modes
was used to reproduce these two modes, and the authors claimed that the secondary mode
is driven by the cooperative combination of fluid nonlinearity and kinetic nonlinearity[6].

2 Simulation Model and Parameters

A hybrid simulation code for energetic particles interacting with a magnetohydrodynamic
(MHD) fluid, MEGA[T, |§], is used for the simulation of EGAMs. In the MEGA code, the
bulk plasma is described by the nonlinear MHD equations. The drift kinetic description
and the 0 f particle method are applied to the energetic particles.

A realistic 3-dimensional equilibrium generated by HINT2 code is used for the simu-
lation. This equilibrium data is based on the LHD shot #109031 at time t = 4.94s. At
this moment, the EGAM activity is very strong, thus it is good to reproduce the EGAM
phenomenon.

In the experiment of LHD, the EGAMs were observed under 2 types of energetic
particle distribution. One is the slowing-down distribution, and another is the bump-
on-tail distribution[3], 5]. The EGAM behaviors with these 2 distributions are similar,
but the half-frequency secondary mode appears only under the condition of bump-on-tail
distribution. Correspondingly, in the present work, we implement the simulation with 2
distributions. The energetic particle velocity distribution function f(v) with slowing-down

type is:
1
- - 1
f0) = G 1)

where v, is the critical velocity. For the bump-on-tail distribution, the charge exchange
is considered, and the velocity distribution becomes:

g(v) = C(v° + o2)57/ 7L, 2)

where C' is an integration constant, 7, is the slowing down time, and 7., is the charge
exchange time. The shape of the distribution function is controlled by the ratio of 7 /7.,.
For 7., — oo, the 7 ratio is 0 and the function is the typical slowing-down type which is
the same as Eq. . With the increase of 75/7.,, the slowing down becomes insufficient
gradually, and more energetic particles distribute in the high-energy region and make a
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bump-on-tail distribution. In addition, a Gaussian-type pitch angle distribution h(A) is
assumed for the energetic ions:

h(A) = exp[—(A = Apear)”/ AN, (3)

where A, represents the pitch angle for the distribution peak and AA is a parameter
to control the distribution width.

The parameters for the EGAM simulation are based on an LHD experiment[3], B, =
1.5 T, electron density n, = 0.1 x10* m~3, electron temperature at the magnetic axis T, =
4 keV, and bulk plasma beta value on the magnetic axis equals to 7.2 x10~*. The injected
neutral beam energy is Enyp; = 170 keV. The safety factor ¢ value is ¢ = 2.82 on the
magnetic axis and ¢ = 0.84 on the plasma edge, negative normal shear. The major radius
of the magnetic axis is Ry = 3.7 m. Cylindrical coordinates (R, ¢, z) are employed. For
LHD equilibrium, there are 10 pitches in the toroidal direction. Since the toroidal mode
number of GAM is 0, for simplicity, only 1 pitch is used for the present simulation. The
numbers of grid points of this pitch in (R, ¢, z) directions are (128,64, 128), respectively.

3 Simulation Results with Slowing-Down Distribu-
tion

The EGAM is observed in LHD is reproduced by MEGA code, as shown in Fig. [Tl The
upper panel represents the frequency spectrum of vy, which is obtained by Fast Fourier
Transform. The initial frequency is 55 kHz, which is similar to the LHD experiment[3] O].
The chirping rate is about 15 kHz/ms, which is also consistent with the experiment[9].
The bottom panel represents the poloidal velocity vy evolution. In the linear growth
phase, the mode amplitude increases with growth rate v/wggan = 19%.
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FIG. 1: The EGAM ‘s reproduced by MEGA code. The poloidal velocity (a) frequency
spectrum and (b) evolution are shown.

The mode profiles of poloidal velocity vy and bulk pressure perturbation 0Py, are
plotted in 3-dimensional figures, as shown in Fig. 2l The vy is plotted at t = 0.140 ms,
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and the 6P, is plotted at t = 0.139 ms. The mode is already saturated at these 2
moments. The 5 slices in each panel represent 5 poloidal cross-sections, and their toroidal
positions are from ¢ = 0 to ¢ = 0.47w with toroidal interval of 0.17. For vy, the blue color
represents positive value, in other words, it represents the counter-clockwise rotation
in poloidal direction, while the red color represents the clockwise rotation. For 0Py,
the blue color represents positive perturbation while the red is negative perturbation.
The poloidal velocity vy is a combination of m/n = 0/0, 1/0 and 2/10 components,
and the d Py, is a combination of m/n = 1/0 and 2/0. The relation between different
components are quantitatively shown in Fig. [3|in a 2-dimensional form. In Fig. (a,), the
most dominant 3 harmonics are m/n = 0/0, 1/0 and 2/10, and other components are
negligible. The amplitude of the 2/10 component is 17% of the 0/0 component. The
m/n = 2/10 components exists due to the LHD configuration. In LHD, there are 10
pitches in the toroidal direction, and there are 2 high field regions and 2 low field regions
in the poloidal direction. This is the first simulation of EGAM in the 3-dimensional
LHD configuration. The mode number is different from the tokamak case, where the vy
oscillation is a combination of m/n = 0/0 and 1/0 components. In the present work, the
dominant mode number of pressure perturbation is m/n = 1/0 and 2/0. The pressure
perturbation rotates poloidally in the nonlinear saturated phase, and the rotation direction
changes periodically. This rotation is caused by the convection of EGAM. Also, it is found
that the mode doesn’t radially propagate in the linear phase, but propagates inward in
the nonlinear saturated phase.
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FIG. 2: The mode profiles of (a) vg and (b) 6 Py in the 3-dimensional form.
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FIG. 3: The mode profiles of (a) ve and (b) 6 Py in the 2-dimensional form.

4 Simulation Results with Bump-On-Tail Distribu-
tion

Both the chirping primary mode and the half-frequency secondary mode are reproduced
by the MEGA code, as shown in Fig. [l Figure [ffa) shows the poloidal velocity vy fre-
quency spectrum, and Fig. (b) shows vy evolution. The primary mode frequency chirps
from 70 kHz. The mode is saturated at t = 0.07 ms, and then, steps into the nonlinear
phase. At t = 1.1 ms, the frequency of the primary mode reaches to 96 kHz, and a sec-
ondary mode with frequency f = 48 kHz is excited. The simulated phenomenon is very
similar to the experimental observation, as shown in Fig. 2 of Ref. [5]. In addition, the
mode profile of vy and 0 P, are analyzed, the mode numbers are same as experimental
measurements. Also, the modes are global for both the simulation and experiment. Fig-
ure [4|(c) shows the Lissajous curves in order to demonstrate the phase lock between the
primary mode and the secondary mode. The frequency relation between these modes are
double. The Lissajous curves are similar with the experimental measurements[5]. The
above comparisons between simulation and experiment show a very good code validation.
This is the first time to reproduce both the primary mode and secondary mode with
3-dimensional model and realistic input parameters.

The secondary mode is identified as an EGAM in the present work, because of 3
reasons. Firstly, the poloidal mode number is m = 0 for poloidal velocity and m = 1
for density. This is the feature of the EGAM and the conventional GAM. Secondly, the
mode frequency is almost same as the conventional GAM frequency, but slightly lower.
According to the theoretical prediction, under the present simulation conditions, the con-
ventional GAM frequency should be 50.1 kHz. The simulated frequency of the secondary
mode is 48+ 1.5 kHz. In Ref. [4], the EGAM frequency can be lower than the conventional
GAM frequency, thus the simulated secondary mode may be a kind of EGAM. Thirdly,
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FIG. 4: The EGAMs are reproduced by MEGA code. Figures (a), (b) and (c) show the

poloidal velocity frequency spectrum, evolution, and Lissajous curves, respectively.

the secondary mode is global. The EGAM is global while the conventional GAM is local,
and this is one of the differences between the EGAM and the conventional GAM[4]. Based
on the above 3 properties, we conclude that the simulated secondary mode is an EGAM.

In order to investigate the reason why the frequency of secondary mode is lower than
the primary mode, the bulk plasma pressure perturbation §F,,;; and the energetic par-
ticle pressure perturbation 6P, are analyzed, as shown in Fig. . The most dominant
components of vg, 6 Py and 0 Py are m/n = 0/0 cosine, m/n = 1/0 sine, and m/n = 1/0
sine, respectively. In the figure, for simplicity, only these 3 most dominant components
are shown. Since the pressure perturbation is much weaker than the poloidal velocity
perturbation, a factor 10 is considered for pressure to make an intuitional comparison.
For the primary mode, the phase of d P,,;x and d Py, are the same. Compared with vy, the
phase of pressure is 0.57 earlier. The primary mode is driven by both 0P, and dPy.
For the secondary mode, the phase differences between 0 Py, and 0 Py is . They cancel
out with each other. Thus, the frequency of the secondary mode is much lower than the
primary mode. The phase of 0P, is same as 6, but the absolute value of 0P, is
smaller, so 0 P, is not shown in the figure.
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FIG. 5: The vy, 6 Py, and 0Py oscillation of (a) primary mode and (b) secondary mode.

In Ref. [6], the authors claimed that both the fluid nonlinearity and the kinetic nonlin-
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earity are important for the secondary mode excitation. In order to clarify the importance
of the fluid nonlinearity, a special linear MHD model is applied. The linear MHD equa-
tions are same as that in Ref. [7]. In the present work, simulations are run in 2 steps.
In the 1st step, the nonlinear code is run, until time ¢ = 0.97 ms when the EGAM is
completely saturated but the secondary mode has not been excited yet. Then, in the 2nd
step, both the linear and nonlinear MHD codes are run separately from the end of the run
of the 1st step. In the 2nd step, the secondary mode appears in both runs. In other words,
the secondary mode can be excited even if the MHD equations are linearised. This result
is different from that in Ref. [6]. In the present work, the excitation of the secondary mode
is only caused by the kinetic nonlinearity, while the fluid nonlinearity hardly works. In
order to clarity the role of the kinetic nonlinearity, the resonate particles are analyzed, as
shown in Fig. [6l The 32 particles whose 0 f values are the largest among all the particles
are analyzed in the linear phase and in the moment when the activity of the secondary
mode is very strong. In the figure, w is the primary mode frequency, and wy is the transit
frequency of the resonate particle. In the linear phase, the mode frequency is 70 kHz,
and many particles are located at w/wy = -1. In other words, most resonate particles’
transit frequencies are the same as the mode frequency. In addition, some particles are
located at w/wy = 2, or wy/(27) = 35 kHz. During the activity of the secondary mode,
apparently, most resonant particles are located at w/wy = 2, or wy/(2m) = 50 kHz. The
particles transit frequencies are the same as the secondary mode frequency. It indicates
that the secondary mode may be excited by the resonant particles. Similar with Ref. [§],
we have the resonance condition w; = ljwy and wy = lowy, where the subscript 1 denotes
the primary mode, the subscript 2 denotes the secondary mode, and [ is an arbitrary inte-
ger. When the primary mode frequency chirps up to 100 kHz, the particles with wy/(27)
= 50 kHz resonate with both the primary and the secondary modes for [y = 2 and [, =
1, respectively. Energy of the primary mode may be transferred to the secondary mode
through the resonant particles leading to the excitation of the secondary mode. Further
investigation will be implemented soon to clarify the detailed mechanism.
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FIG. 6: The 32 particles whose 0f wvalues are the largest among all the particles are
analyzed in (a) the linear phase and in (b) the moment when the activity of the secondary
mode is very strong.
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5 Summary and Conclusions

In summary, 3 conclusions are obtained in the present work. Firstly, the simulation
of EGAM in the realistic 3-dimensional equilibrium is obtained for the first time, and
the results are very similar to the experimental observation. It is found that the poloidal
velocity oscillation is a combination of m/n = 0/0 (strong), 1/0 (medium) and 2/10 (weak)
components. This is different from the tokamak case. Secondly, the chirping EGAM and
the associated secondary mode are reproduced with the 3-dimensional model and realistic
parameters for the first time. The results are good validations of the simulation. It is found
that the phase differences between 0 Py, and 0 P is 7 for the secondary mode. The 6 By
and 0P cancel out with each other, and thus, the frequency of the secondary mode is
much lower than the primary mode. Thirdly, it is found that the fluid nonlinearity doesn’t
work for the excitation of the secondary mode, which is different from the conclusion of
Ref. [6]. The secondary mode may be excited by the resonant particles, whose transit
frequencies are the half of the primary mode frequency.
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