ITER Core Thomson scattering: Objectives and Error Analysis FIP/P4-27

G.S. Kurskiev¹, <u>E.E. Mukhin¹</u>, N. Ageorges², A.G. Alekseev³, P. Andrew⁴, M. Bassan⁴, P.V. Chernakov⁵, A.V. Gorshkov³, S. Gutruf², D. Kampf², M.M. Kochergin^{1,4}, A.B. Kukushkin^{3,6}, A.S. Kukushkin^{3,6}, A.G. Razdobarin¹, A. Reutlinger², D.S. Samsonov¹, A.N. Saveliev¹, P.A. Sdvizhenskii³, S.Yu. Tolstyakov¹, M.J. Walsh⁴

¹loffe Institute, St.Petersburg, Russian Federation,
²Kampf Telescope Optics GmbH, Munich, Germany,
³NRC Kurchatov Institute, Moscow, Russian Federation,
⁴ITER Organization, Cadarache, Saint-Paul-Lez-Durance, France,
⁵ZAO Spectral-Tech St.Petersburg, Russian Federation,
⁶National Research Nuclear University MEPhI, Moscow, Russian Federation

(i) Core TS baseline and advanced requirements are analysed, and alternative conceptual design is proposed.

Baseline requirements include $0.5 < T_e < 40$ keV, density of $0.3 \cdot 10^{20}$ m⁻³ < $n_e < 3 \cdot 10^{20}$ m⁻³, coverage of the core region -0.3< r/a <0.85 and frequency 10 Hz for advanced control and key physics studies.

- Advanced requirements include improved temporal and spatial resolutions for wider physical tasks (e.g., small profile perturbations and fast processes in the core).
- Alternative conceptual design of multipoint Thomson scattering in ITER Core plasma is presented vs CDR version and LIDAR. Suggested in-vessel two-mirror collection optics is non-inferior to LIDAR in terms of reliability and simplicity. Laser beam layout covering -0.3< r/a <0.85 is considered using several lasers with various locations of beam waists. A challenge of spatial resolution ~67 mm for large scattering angle ~160° 170° is addressed to decrease throughput of the collection optics. Besides simplifying the design, the lower throughput will reduce the collected background.

(ii) Outlook:

- Design of both probing and collecting optics.
- Study of electron velocity distribution for deviations from the Maxwellian one, with respective hardware adjustment.
- Feasibility study of supplementary techniques, i.e. several probing wavelengths and conventional TS + polarimetry.