Divertor heat flux simulations in ELMy H-mode discharges of EAST and other tokamaks

T. Y. Xia^{1,2}, B. Chen^{3,2}, T.F. Tang^{4,2}, B. Gui^{1,2}, X.T. Xiao^{1,2}, X. Q. Xu², D. H. Li¹, Z. Zheng¹ and EAST Team¹

¹ASIPP, ²LLNL, ³USTC, ⁴DUT

- Six-field two-fluid model in BOUT++ framework is used for the heat flux simulations:
 - Self-consistent turbulent transport
 - Flux limited thermal conduction
 - Neoclassic transport as diffusion terms
 - Sheath boundary conditions on targets
- Validations with DIII-D ELMy H-mode #144382: similar time evolution, narrower width, twice amplitude.

- → H-mode discharges on EAST, DIII-D and C-Mod with different Ip for the SOL width $λ_q$ scaling simulations.
 - Similar trend of λ_q to I_p .
 - Half of the experimental amplitude on EAST: no RF heating effects on edge topology.
 - Good agreement with multi-machine scaling [3] in the range of 0.45MA<I_p<1MA.
 - Neoclassic transport is important for the low I_p case.

[1] T.Y. Xia and X.Q. Xu, Nucl. Fusion 55, (2013) 113030.
[2] L. Wang, H.Y. Guo, G.S. Xu et al., Nucl. Fusion 54 (2014) 114002.
[3] M.A. Makowski et al, Phys. Plasmas 19 (2012) 056122.

(a) The comparison between simulated SOL width λ_q with EAST experimental statistics. The simulated λ_q shows the similar trends to Ip, but the amplitude is more than half smaller than the measurements. (b) The simulated SOL width compared with multi-machine results.

Left: heat flux profiles on targets during ELM burst on DIII-D. Right: Simulated heat flux profiles [1].