First Observation of ELM Suppression in ASDEX Upgrade In a Shape Matching Experiment with DIII-D

by

R. Nazikian¹

on behalf of W. Suttrop², A. Kirk³, M. Cavedon², T.E. Evans⁴, B. Grierson¹, A. Hyatt⁴, M. Knolker², Y.Q. Liu³, B. Lyons⁴, R.M. McDermott², C. Paz-Soldan⁴, D. Orlov⁵, D.A. Ryan³, E. Viezzer², Z. Wang¹, M. Willensdorfer², A. Wingen⁶, and the AUG, DIII-D and EUROfusion MST-1

teams

¹Princeton Plasma Physics Lab., ²Max-Planck-Institut für Plasmaphysik,³CCFE, Culham Science Centre, ⁴General Atomics, ⁵UC San Diego, ⁶Oak Ridge National Lab.,

Presented at the 26th IAEA Fusion Energy Conference Kyoto, Japan October 22, 2016

AUG

DIII-D

ELM Suppression Is Observed For First Time in ASDEX Upgrade at ITER Relevant Collisionality ($v_e^* \approx 0.25$)

First Observation of ELM Suppression in ASDEX Upgrade In a Shape Matching Experiment with DIII-D

• Characteristics of ELM suppression in ASDEX Upgrade, comparison to DIII-D

• The role of plasma shape in controlling access to ELM suppression

First Observation of ELM Suppression in ASDEX Upgrade In a Shape Matching Experiment with DIII-D

 Characteristics of ELM suppression in ASDEX Upgrade, comparison to DIII-D

• The role of plasma shape in controlling access to ELM suppression

DIII-D and ASDEX In Vessel Coils

DIII-D with n=2, 3, ELM suppression AUG with n=2, 4, ELM mitigation

ELM Suppression Previously Not Been Observed in ASDEX Upgrade With Comparable Plasma Parameters to DIII-D

AUG: Strong (10x) ELM mitigation with n=2 RMP

Coupling to edge kink is essential

• Lack of ELM suppression in ASDEX Upgrade is a concern for ITER \rightarrow Possible hidden variables?, impact on ELM coils design?

[Kirk, Suttrop NF 2015]

At Last We Tried Matching Shape: Increase Shaping in AUG, Decrease Shaping in DIII-D, Meet Somewhere in the Middle

At Last We Tried Matching Shape: Increase Shaping in AUG, Decrease Shaping in DIII-D, Meet Somewhere in the Middle

Proof of Principle: DIII-D Demonstrates Access to ELM Suppression in the ASDEX Upgrade Matched Shape

• Increase in collisionality at low- δ due to large influx of carbon

Success: ASDEX Upgrade Achieves ELM Suppression at Higher Triangularity With Improved Confinement

Increasing Triangularity in AUG Led To ELM Suppression After The Electron Density Fell Below a Threshold

The Pedestal Density Threshold For ELM Suppression Is Very Similar For AUG and DIII-D Matched Plasmas

- Large difference in T_i due to difference in plasma dilution
- \rightarrow AUG has W wall, some Boron Z_{eff} =1.5
- \rightarrow DIII-D has C wall $Z_{eff} = 4.5 (n_D \approx 1/3 n_e)$ in these experiments

H98y2 ≈ 0.95

The Pedestal Density Threshold For ELM Suppression Is Very Similar For AUG and DIII-D Matched Plasmas

- Large difference in T_i due to difference in plasma dilution
- \rightarrow AUG has W wall, some Boron Z_{eff} =1.5
- \rightarrow DIII-D has C wall $Z_{eff} = 4.5 (n_D \approx 1/3 n_e)$ in these experiments

Effective Exhaust of Tungsten in AUG ELM Suppressed Plasmas; $\tau_W/\tau_E \approx 1.2$, Similar to ELMy H-mode Level

Effective Exhaust of Tungsten in AUG ELM Suppressed Plasmas; $\tau_W/\tau_E \approx 1.2$, Similar to ELMy H-mode Level

• Magnetic Perturbations also effective in preventing W accumulation in ELMing phase

First Observation of ELM Suppression in ASDEX Upgrade In a Shape Matching Experiment with DIII-D

• Characteristics of ELM suppression in ASDEX Upgrade, comparison to DIII-D

• The role of plasma shape in controlling access to ELM suppression

Stronger Shaping Can Enhance Access To ELM Suppression By Increasing Stable Edge Kink Response

- Step 1: Stronger shaping can increase pedestal pressure and beta at low edge collisionality
- \rightarrow Effect of triangularity, Shafranov shift, transport stiffness

Step 2: Higher pedestal pressure at low collisionality amplifies the the stable edge kink response to magnetic perturbation (MP)

Hypothesis: Higher stable edge kink response improves access to ELM suppression

Step 1: Increased Shaping Can Enhance Pedestal Pressure and Beta at Low Collisionality in <u>Stable</u> Region

- Increased δ , shafranov shift allows access to higher pedestal pressure

Step 2: Increase In Pedestal Pressure at Low Collisionality Enhances <u>Stable</u> Edge Kink Response to MP

Low-n kink amplification comes from increase in edge bootstrap current

Pedestal Pressure and Edge Current Are Higher in ELM Suppressed Plasma At Higher δ Than in ELM Mitigated Case

Leads To Stronger <u>Stable</u> Edge Kink Response: [Y. Liu APS Invited 2016]

Magnetic Field Phase Scan Can Be Used to Optimize Stable Edge Kink Response

 Phasing scan varies poloidal spectrum, leads to tuning and detuning from edge kink mode

Rapid Progress in the Validation of the Stable Edge Kink Response From Multiple Sensors

Shape Matching Experiment Leads To First Observation of ELM Suppression in ASDEX Upgrade

- ELM suppression observed in AUG for 50 τ_{E} at ITER relevant v_{e}^{*} with effective exhaust of tungsten $\tau_{W}/\tau_{E} \approx 1.2$
- Similar features of ELM suppression in AUG and DIII-D shape matched plasmas despite impurity differences
- Access to ELM suppression at higher- δ in AUG confirms importance of stable edge kink response
- Extension to AUG is good news for ITER, opens new directions for studies in tungsten and carbon machines

