

## Runaway Electron Studies with Hard X-Ray and Microwave Diagnostics in the FT-2 Low-Hybrid Current Drive Discharges

A.E. Shevelev<sup>a</sup>, E.M. Khilkevitch<sup>a</sup>, S.I. Lashkul<sup>a</sup>, V.V. Rozhdestvensky<sup>a</sup>, A.B. Altukhov<sup>a</sup>, D.V.Kouprienko<sup>a</sup>, I.N. Chugunov<sup>a</sup>, D.N. Doinikov<sup>a</sup>, L.A. Esipov<sup>a</sup>, D.B. Gin<sup>a</sup>, M.V. Iliasova<sup>a</sup>, V.O.Naidenov<sup>a</sup>, N.S. Nersesyan<sup>a</sup>, I.A. Polunovskiy<sup>a</sup>, A.V. Sidorov<sup>a</sup> and V.G. Kiptily<sup>b</sup>

<sup>a</sup>Ioffe Institute, Politekhnicheskaya 26, St Petersburg 194021, Russian Federation <sup>b</sup>CCFE, Culham Science Centre, Abingdon, Oxon, X14 3DB, UK

- A gamma-ray spectrometer developed for gamma-ray diagnostics of ITER and based on LaBr<sub>3</sub>(Ce) scintillator has been used in measurements of hard X-ray emission generated by runaway electrons in the FT-2 tokamak discharges with LHCD.
- A spectrum deconvolution code DeGaSum was used for reconstruction of the energy distribution of runaway electrons escaping from the plasma and interacting with materials of the FT-2 limiter in the vacuum vessel.
- Evolution of runaway electron  $E_{max}$  in shots with LHCD was investigated with time resolution 1-5 ms.
- During the studies clear correlation between input LHCD power and  $E_{max}$  was observed only at low LH power input, when  $Z_{eff}$  varied weakly at RF pulse. Deceleration of  $E_{max}$  ramp-up in this case mainly was caused by loop voltage decrease.
- Bursts looking like sawtooth oscillations were observed on MHD and HXR signals during LHCD runs. Differences in RE energy distributions registered in bursts and between them were observed.