Mitigation of Runaway Electrons with SMBI on HL-2A tokamak

Yi Liu¹, Yunbo Dong¹,Y.Xu¹, Chengyuan Chen¹, Hao Wang², Yangqing Liu³, Xiaodong Peng¹, Jinming Gao¹,Y.P.Zhang¹

Southwestern Institute of Physics, Chengdu, China
 National Institute for Fusion Science (NIFS), Japan
 Department of Engineering Physics, Tsinghua University, Beijing, China

Outline

- Massive Gas Injection and Supersonic Molecular Beam Injection system on HL-2A
- Experimental results
 - Disruption with formation of runaway plateaus following MGI
 - High frequency mode during CQ and its role

2/23

Mitigation of runaway current by SMBI

Gas injection techniques on HL-2A

- MGI has been developed on various tokamaks, including AUG, TEXTOR, DIII-D, JET. A new MGI system has been installed on HL-2A tokamak for disruption mitigation.
- SMBI, which is first developed in SWIP and later widely applied on many devices, provides a possible candidate as a fuelling method for future devices. It also has been successfully used for ELM mitigation on HL-2A and other machines.

(YAO Lianghua, Nucl. Fusion 1998 38 631)

(W.W. Xiao. et al 2012.Nucl. Fusion 52(11):114027)

Dedicated experiments on generation and mitigation of RE have been carried out with MGI combined with SMBI on HL-2A.

(Y.P.Zhang,Y.Liu. et al 2012.Physics of Plasma)

Development of the MGI/SMBI system

MGI: open time:<0.25ms; injection time: <2ms; throughput :10²³ working gas pressure :2-14bar

SMBI:open time: 0.2ms; injection time~5-15ms; throughput :10²²

4/23

(W.W. Xiao. et al 2012.Nucl. Fusion 52(11):114027)

Gas jet penetration in HL-2A plasma

Radiated power measured by AXUV array

5/23

Fast-framing camera analysis

The cold front of gas injected with both techniques can reach the q
 = 2 surface where it might trigger MHD instabilities.

Outline

- Massive Gas Injection and Supersonic Molecular Beam Injection system on HL-2A
- Experimental results
 - Disruption with formation of runaway plateaus following MGI
 - High frequency mode during CQ and its role

6/23

Mitigation of runaway current by SMBI

Summary

Three types of MGI-induced disruption

➤Generation of runaways with Argon injection.

 $(B_T = 1.38 \text{ T}, I_p = 155 \text{ kA}, n_e = 0.7 \text{-} 1 \times 10^{19} \text{m}^{-3}, \text{Gas: Ar}, \text{Throughput: } 1.2 \text{-} 7.5 \times 10^{20})$

Long-lasting RE plateau at low Bt

Gas: Ar, Ip=138kA, $B_T = 1.38T$, $N_e = 0.7 \times 10^{19} \text{m}^{-3}$

➢A runaway plateau is formed, evidenced by their synchrotron emission and by the neutron flux.

➢Runaway energy is

 $W_{RE MAX} \sim 23 Mev.$ The RE plateau is achieved at a lower value of $B_t = 1.38T.$

8 /23

Southwestern Institute of Physics

Observations of Runaway discharges

The synchrotron radiation, originating from the movement of the highly relativistic runaways, is measured with an infrared thermographic camera.

Infrared periscope system parameters	
Detector	MCT
Waveband	8-9.4μm
Pixel	640×512
Frame rate	>113Hz (adjustable)
Integration time	120µs

Movie from an IR camera showing synchrotron radiation

9/23

WIP Southwestern Institute of Physics

Scan of injected particle number

Southwestern Institute of Physics

Outline

 Massive Gas Injection and Supersonic Molecular Beam Injection system on HL-2A

• Experimental results

- Disruption with formation of runaway plateaus following MGI
- High frequency mode during CQ and its role

11/23

Mitigation of runaway current by SMBI

• Summary

High frequency mode during CQ before RE

Southwestern Institute of Physics

Obvious high frequency mode is observed in the magnetic pick-up coils and .

♦ □ The high frequency mode appears at the beginning of the current quench and lasts about 2ms;

◆The mode number is n=1, and m=3 or 2.

◆ Its frequency is about 80-180kHz;

◆ The magnetic fluctuation level of this mode is estimated as: dB/B≈6
 x 10⁻⁴.

The characteristic of the mode frequency

Southwestern Institute of Physics

Slight change in mode frequency during its short lifetime;

➢ It is found that the mode frequency decreases with the increase of plasma density.

Behavior of the mode frequency

The mode frequency is higher at low density and decreases with the increase of n_e , suggesting that the mode has the behavior of an Alfvénlike mode.

➤ The statistical analysis of MGI induced disruption and natural disruption both with RE plateaus also verified the relationship between Alfvén speed $V_A \approx B_T * n_e^{-1/2}$ and mode frequency.

It is found that the frequency scales roughly with n_e^{-1/2}, consistent with the toroidal alfvén eignmode (TAE)

Relationship between the RE current and the mode level $\delta B/B_T$

Alfvén Spectrum calculation

Spectrograms and the Alfvén Spectrum simulations at **different electron density**.

The simulated gap frequencies of the TAE modes are in fairly good agreement with experimental measurements

Role of the TAE mode on runaways

•Runaway plateau is easy to form on the condition of low dB/B, and vice versa. The runaway current is invisible when the normalized magnetic fluctuation level exceeds a threshold of about 7.8×10^{-4} .

This magnetic mode plays a scattering role on the RE beam strength.
 Level of dB/B of TAE mode can be controlled by different N_{ini}.

Outline

- Massive Gas Injection and Supersonic Molecular Beam Injection system on HL-2A
- Experimental results
 - Disruption with formation of runaway plateaus following MGI
 - High frequency mode during CQ and its role

- Mitigation of runaway current by SMBI
- Summary

RE mitigation by SMBI

Runaway current caused by argon injection with MGI was successfully suppressed by SMBI (15ms) with a number of injected helium atoms of about 1.0×10²¹

Southwestern Institute of Physics

Images of RE dissipation by SMBI

SMBI(a.u.

DL 0

➤The disruption triggered by MGI and mitigation of RE by SMBI.

Time(ms)

MGI

(kA)

 Synchrotron emission form runaway electrons are reduced by the SMBI injection of helium;
 It Indicates the loss of RE after SMBI.

RE mitigation by SMBI with different gases

Comparison of runaway current mitigation for helium injection versus Ar injection

With SMBI, both Ar and helium gas can be used for RE dissipation while only the high-Z gases like Ar are proved effective in RE dissipation with MGI.
It suggests that SMBI has the advantage of deliver low-Z gas for RE dissipation.

Realization of RE mitigation with n=1 RMP coils

Southwestern Institute of Physics

Future Plan

Apply MGI and SMBI for Disruption/REs suppression.
Develop a new valve for both massive gas and pellet injection.
Using three SMBIs for radiation

asymmetries study.

New valve combining the massive gas and metal pellet injection

Summary

- Experiments on mitigation of runaway electrons with MGI/SMBI as well as RMP have been carried out on HL-2A tokamak.
- Mitigation of runaway current was successfully implemented with SMBI during disruptions deliberately triggered by MGI.
- A toroidal alfvén eignmode (TAE) was observed during disruptions on HL-2A, which plays a favorable role in scattering runaway electrons, hence limiting the strength of runaway beam.
- More experimental investigation and simulation work are planed to explore the mechanism of RE mitigation with SMBI/MGI.