
SOLPS modeling of DIII-D discharges indicates ∇B drift driven flows modify pedestal structure

- ∇B drift drives radial currents in the pedestal
 - modification to particle flux in highgradient region of pedestal
 - favorable drift reduces particle flux
- Favorable ∇B drift results in higher P_{tot} inside pedestal
 - lower, wider density pedestal
 - higher T_e
 - hypothesis: reduced density gradient affects KBM stability allowing wider pedestal

0.85

0.80

0.90

ψ_N

0.95

1.00

ΨN

100

50

-50

-100

0.8

0.4

0.0

0.80