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Abstract:
An L→H power threshold scaling including the minimum in Pth (n) is discussed, elucidating
an impact of inter-species energy transfer on threshold physics. Using a new four-field LH
transition model, we study transitions in collisionless, electron heated regimes where the
electron-ion coupling is allowed to be completely anomalous, due to the fluctuation of ⟨E · J⟩
work on electrons and ions. New transition scenarios, characterized by the sensitivity of
transition evolution to pre-existing L-mode profiles are also considered, using the new model.

1 Introduction

H-mode operation [1, 2] is the regime of choice for good confinement. This renders the
questions of how to access, and remain in, H-mode critical. Foremost of these issues is
the L→H transition power threshold and the related problem of hysteresis. To predict
ITER transitions, one must understand the threshold in low collisionality, electron heated
regimes where the physics may differ significantly from present day discharges. However,
to properly understand the low-collisionality transitions it is important to extend the
model beyond collisional coupling between the species. Therefore, in this paper, we
discuss:

1. L→H power threshold scaling with special emphasis on the origin of the minimum
in Pth (n) [3]. We elucidate the more general impact of inter-species energy transfer
on threshold physics. Within collisional coupling between electrons and ions the
minimum in the density scans of the power threshold has been studied recently in
detail [4]. It is briefly discussed here to create a framework for studying the further
two aspects of the L→H transition:

(a) Transitions in collisionless, electron heated regimes where electron-ion coupling
is anomalous, due to the fluctuations producing ⟨E · J⟩ work on electrons and
ions. A new element here is nonlinear flow damping which is dominant. A
general theory of collisionless flow damping has been developed earlier [5].
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2. New transition scenarios, characterized by the sensitivity of transition evolution to
pre-existing L-mode profiles. This phenomenon is connected with the bi-stability
range in the parameter space. The coexistence of L and H regimes for the same set
of parameters makes a spontaneous or power-pulse-triggered L → H transition pos-
sible. To obtain such transitions using numerical model, an analytic identification
of the phase coexistence domain is crucial.

To study the phenomena (2) and (3), we have developed a new numerical model. It differs,
in a number of ways, from our previous 6-field model [4], that was primarily designed to
study the collisionally dominated coupling between species and associated transitions, as
well as its 5-field predecessor described earlier in detail in [6]. The new model is lightened
in terms of the number of fields it evolves, thus focusing on the most important such
fields. We removed the density and the mean flow velocity evolution from the model
as deeming less important for the goal. Thus, transitions will occur in a fixed density
profile, so the model will be useful in studying I-mode. We may then focus on the anoma-
lous coupling between electrons and ions and isolate the inter-species thermal coupling
phenomena in low density and low-collisionality regimes, relevant to ITER operation.
Another justification of this system reduction is that the present four-field model can be
studied analytically relatively easily, compared to the previous six-field model that makes
identification of the transition trigger much more difficult, given the complicated form of
collisionless coupling. Finally, the new model is improved on computing, which is now
much better suited for a required description of rapidly propagating sharp fronts, as it
utilizes adaptive space-time meshes.

1.1 Power Threshold Scaling.

FIG. 1: 3D scatter plot of transition power
threshold Pthr in heating mix-density vari-
ables. Note that the projection of the curve
on the (P th, n)-plane has a clear minimum.

Our previous reduced model independently
evolved the collisionally coupled electron
and ion temperatures, along with density,
turbulence intensity and flow profiles [4].
Extensive studies of the model have re-
vealed the physics of the power threshold
minimum in density. Fig.1 shows the power
threshold plotted in 3D vs density and
electron-ion heating mix. The dotted curve
shows that a minimum in Pth (n) origi-
nates from a combined effect of the den-
sity dependence of collisional electron-ion
coupling and the electron-ion heating mix.
Specifically, the Pth decrease with grow-
ing n occurs due to collisional electron-ion
heat transfer and an increase in ion heat-
ing. These serve to pump the edge ∇Pi,

and thus the edge electric field shear. The ion heat flux at the edge is critical for the
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transition. The high-density increase in threshold power appears as a consequence of
increased flow damping. In all cases, the ion channel (directly or via electron coupling)
is ultimately responsible for transitions. The role of the ratio τ = τEe/τequ (i.e. electron
energy confinement time to collisional equilibration time) emerges as crucial parameter
which governs the transition. For τ < 1, there is no electron heated transition. More gen-
erally, this consideration shows that the threshold is not determined by edge physics alone,
as frequently thought. Rather, the transition involves the global transport dynamics and
species coupling as well.

This reinforces the role of energy transfer in the threshold.

1.2 Collisionless Regime Transitions

Ongoing studies are concerned with understanding the transition in the collisionless
regime. This challenging regime presents at least two problems:

1. The electron-ion coupling is now anomalous, due to ⟨E · J⟩ work

2. the shear flow damping is turbulent, and not due to collisional drag.

To address (1) we have extended a model of collisionless (i.e. anomalous) power coupling
between electrons and ions. Most notable in this model are the absence of a coupling
simply proportional to Te − Ti, and the intensity dependence of the power coupling.
To address (2) we have extended a recently developed theory of minimum enstrophy
relaxation [7] which predicts that the flow damping should have the form of a turbulent
hyper-viscosity. This nonlinear flow damping leads to additional turbulent viscous heating
of the ions.

Preliminary results of studies of collisionless regimes suggest that L→H transition
occurs when an anomalous electron-ion thermal coupling front attached to a propagating
turbulence intensity arrives at the edge. The transition occurs when the front hits the
edge and impulsively raises Ti there, thus raising ∇Pi, and the diamagnetic electric field
shear, and so triggering the transition. Further studies of this interesting and relevant
phenomenon are ongoing. This study highlights the importance of collisionless energy
transfer process to transitions in regimes of ITER relevance.

1.3 New Transition Scenarios

Using the 4-field model, we are exploring new transition scenarios. New studies have
revealed that a spontaneous transition can occur in the absence of turbulence driven shear
flow. The key point here is the sensitivity of the transition to the pre-existing L-mode
density profile. Ongoing work is focused on understanding this sensitivity and how to
exploit it to optimize the access to H-mode. Our aim is to map the basins of attraction
for different transitions. Now we turn to a brief description of the key physical elements
included into the new 4-field model.
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2 Four-field model for LH transition

2.1 Units, parameters, rescaling, and notation
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FIG. 2: Phase coexistence domain

To make the model manageable, we in-
troduce some dimensionless variables and
parameters along with certain simplifica-
tions. So, the units for time, length
and other quantities are as follows: [t] =
a2/C2

s τc, [x] = a, where Cs =
√

Te0/M =
const and a is the minor radius. Where
it is needed, Cs will retain its temperature
dependence. Te0 is the edge constant tem-
perature and τc is also constant here. Fur-
thermore, [χe,i

neo] = C2
s τc,

M
2m

τeC
2
s τc/a

2 ≡
τ ,

[
LTi,e

, Ln

]
≡ 1/κn. The remainder of

notation is as follows: γc = nγc0/T
3/2
i ,

τ = τ0T
3/2
e /n, n = n0 (1− βx2), κn =

−2βx/ (1− βx2) = d lnn/dx. We normal-
ize n and other density dependent vari-
ables, such as γc, to n0, but the dependence

of collision time on density and temperature is retained and, as shown above, the respec-
tive quantities contain a factor T 3/2/n. In out simulations of the system dynamics, we will
adjust all the parameters to obtain physically reasonable behavior. Then we will verify
that the parameter values can emerge from reasonable combinations of the values n, T ,
etc.

3 Equations

As pointed out earlier, the new model evolves the electron and ion temperatures Te,i, drift
wave (DW) turbulence intensity, I , and zonal flow (ZF) velocity W :

∂Te

∂t
=

∂

∂x

(
I

1 + αtR
+ χe

neo

)
T ′
e −

1

τ
(Te − Ti) + S ′

e + γe0I (κn + σT ′
e/Te) (1)

∂Ti

∂t
=

∂

∂x

(
I

1 + αtR
+ χi

neo

)
T ′
i +

1

τ
(Te − Ti) + S ′

i − γe0I (κn + σT ′
e/Te) + γvIW

′2 (2)

∂I

∂t
=

(
γL −∆ωI − α0W

2/2− αvR
)
I + χN

(
I ′2 + I · I ′′

)
(3)

∂W

∂t
=

α0IW

1 + ζ0R
− γcW + γv (I

′W ′ + IW ′′) (4)
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In this initial study of the new model, we adopt a simplified version of the transport
suppression factor R, which is strictly valid for a strong thermal coupling between the
species (Te ≈ Ti), be it anomalous and collisional. As the work on this model progresses we
will relax the above limitation. So, currently the transport and DW instability suppression
factor in eqs.(1-4) is used in the following simplified form

R = [κn (κnT + T ′)]
2
, with T ≡ Ti + Te.

The heat sources of electrons and ions are

S ′
e,i =

2S ′
0e,i√

πDe,i [erf ((1− ae,i) /De,i) + erf (ae,i/De,i)]
exp

[
−
(
x− ae,i
De,i

)2
]

while the ITG and CTEM instabilities contribute to the linear growth rate of DW as

follows: γL =
√
Te

[
γL0ℜ

√
−T ′

i/Ti − T ′
i0 − γe0 (κn + σT ′

e/Te)
]
. The conventionally used

ZF amplitude is E0 = W 2/2. The shear flow velocity that enters the suppression factor is
VE = (c/eBn) p′, p = n (Te + Ti) , ⟨VE⟩′ ≈ − (c/eB)κn (κnT + κn). Other notations are
standard and have already been described in refs.[6, 4].

4 Stationary analytic solutions

First we seek for a steady-state solution, in the limit of small τ → 0. The strategy
behind our solution is to assume that the turbulent components sit at their thresholds:
γv = χN = 0. The boundary conditions are set to zero gradients (stress free); otherwise
the code will develop a wall-type dissipative instability and cannot be verified. A steady
state solution is then described by equations for Te,i (x) , I and W , obtained from eqs.(1-
4) by setting ∂t = 0. For τ ≪ 1, one should expect Te = Ti + O (τ) ≈ T/2. By adding
these equations and using eq.(4), we obtain(

ζ0 − αt

1 + αtR
R + χ

)
T ′ +

α0

2γc
(χi − χe)∆T ′ − S = const

where we denoted ∆T = Ti−Te , ∂S/∂x = −α0 (S
′
e + S ′

i) /γc and χ = 1+(χi
neo + χe

neo)α0/2γc.
Assuming here |∆T | ≪ T , we have[

χ− α (κnT + T ′)2

1 + ω (κnT + T ′)2

]
T ′ = S (x) (5)

where α = (αt − ζ0)κ
2
n and ω = αtκ

2
n. The integration constant in S is chosen such that

S (0) = 0, by virtue of the thermoinsulation at the boundary x = 0 (symmetry axis),
T ′ = 0.

4.1 Flux-driven transitions
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FIG. 3: Graphic illustration of the bifurca-
tion diagram, shown in Fig.2. The three
curves correspond to the r.h.s. of eq.(10)
drawn for three values of δ that represent,
respectively, an L-mode solution, LH coexis-
tence phase, and the H-mode solution. These
values of δ are taken from the region below
the shaded (phase-coexistence zone), from
that zone, and from the one above it.

Consider a situation in which the heat
sources S ′

e,i (x) are localized near the ori-
gin (x = 0, i.e., core plasma). Then,
the function S (x) levels off at x > Lh,
where Lh denotes the heat deposition ra-
dius and S can be considered constant be-
yond this point. For simplicity, and with
no loss of generality, we may assume that
S = const, for all x > 0. So, here we
consider flux-driven transitions. That is,
when the function S in eq.(5) is constant,
the solutions T = T (x) of this equation
will depend on five independent parame-
ters: χ, α, ω, κn and S. Of course, we
are most interested in bifurcations of these
solutions. A general bifurcation problem
in five free parameters is clearly unman-
ageable, so we ultimately reduce this num-
ber down to two. To preserve contact
with the physical formulation, however, we
make this reduction step by step, rescaling
first x to Ln; so, we introduce the follow-
ing transformations κnx → x, S/κn → S,
κ2
nα → α,κ2

nω → ω. The range of x is now
κn < x < 0, assuming κn < 0. Note that, this transformation merely transfers one free
parameter to the boundary condition which is still useful in studying local bifurcations.
Eq.(5) then rewrites [

χ− α (T + T ′)2

1 + ω (T + T ′)2

]
T ′ = S = const (6)

The boundary condition for the last equation at the edge is T (κn) = T1 which is set by
the definition of the boundary value problem given in eqs.(1-4). Note that the boundary
value T (0) = T0 may be determined only after the complete solution T (x) is obtained.

Now that both T and T ′ are positive, as S also is, we solve the last equation for T (T ′)
as follows:

T = c

√
T ′ − a

b− T ′ − T ′ (7)

where

a = S/χ, b = S/ (χ− α/ω) , c = (ω − α/χ)−1/2

It follows that a < T ′ < b. Eq.(7) represents the original transport bifurcation in a three
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dimensional parameter space (a, b, c). From this equation we obtain the following profile
of the total temperature gradient T ′ = T

′
e + T

′
i .

x (T ′) = x0 − ln |T ′|+ (8)

c

b

{√
T ′ − a

b− T ′ +
b− a

2
√
ab

[
tan−1 T ′ −

√
ab√

(b− T ′) (T ′ − a)

]
−

[
tan−1 T ′ +

√
ab√

(b− T ′) (T ′ − a)

]}

Now, eqs.(7) and (8) determine the temperature profile T (x) in a parametric form in
which the parameter is T ′.

However simple the above method of solving eq.(7) for T (x) , we still need to resolve
this equation for T ′ (T ) for properly imposing the boundary conditions. Physically, the
temperature is given at the edge, so we need T ′ at x = −κn (the edge position in new
variables introduced above) to determine the integration constant in eq.(8) and fully
resolve the bifurcation problem considered. To solve eq.(7) for T ′ in a manageable way,
further transformations are required, as the number of quantities it contains (five) is quite
large. We first reduce this number to three by using the following variables

ξ = (T ′ + T ) /c, δ = (a+ T ) /c, β = (b+ T ) /c (9)

Eq.(7) then rewrites

ξ =

√
ξ − δ

β − ξ
(10)

Using the above relations, the phase coexistence condition can be written as follows

2

27
max

[
0, β

(
9

2
− β2

)
−

(
β2 − 3

)3/2] ≤ δ ≤ 2

27

[
β

(
9

2
− β2

)
+
(
β2 − 3

)3/2]
, β ≥

√
3

(11)
The respective domain on the (β, δ) plane is shown in Fig.2. If the parameters (β, δ) lie
outside of the phase-coexistence domain, only one solution out of the three possible in
eq.(10) is real. In particular, for β >

√
3 it corresponds to an H-mode solution, as shown

in Fig.3 with the lower dashed curve. For β ≤
√
3, we obtain an L-mode solution, as it

corresponds to the lowest real T ′ value out of the three solution with the other two roots
becoming complex.

Using the above bifurcation analysis, we will study spontaneous and pulse/noise driven
LH transitions. By choosing the system parameters within the phase-coexistence domain,
we have already obtained such transitions, with a preliminary example shown in Fig.4.
The initial state clearly belongs to a stable L-mode, as no kink in the temperature profile
is present and the stationary solution persists for some time. However, a spontaneous
transition to a stable H-mode occurs in the range 3 < t < 5 when the system develops
such kink in the temperature profile. A short heat pulse is applied around 2/3 of the
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full integration time, but leaves the H-mode essentially unchanged. The next step in this
ongoing work will be relaxing an artificially enhanced temperature equilibration between
electrons and ions, before studying the spontaneous transitions in more detail.

5 Conclusions
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FIG. 4: Spontaneous LH transition with sup-
pressed shear flow.

A new analytical and numerical 4-field
model for describing L → H transitions
in weakly collisional ITER-related regimes
is developed. It evolves electron and ion
temperatures, drift wave and zonal flow en-
ergies. A new type of transition scenario,
which is more sensitive to the pre-existing
L-mode structure than to the power vari-
ation near the threshold is identified. Dy-
namical realization of such transitions be-
came possible after an accurate analytic
determination of the phase coexistence do-

main and transition criteria in a multi-dimensional parameter space of the system. Sta-
tionary solutions of the model, obtained analytically for that purpose, are also crucial
for the code verification. The work studying dynamical evolution of L → H transitions
numerically is ongoing.
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