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BACKGROUNDS 

• Peeling-ballooning mode (PBM) with the toroidal mode number 𝑛 is 
intermediate (~30) triggers the type-I ELM. [Snyder PoP2002 etc.] 

• Results in JT-60U and JET-ILW imply 
higher-𝑛 modes sometimes trigger the 
ELM.[Aiba NF2011, Giroud PPCF2015 etc.] 

• “Non-ideal” effects have impact on the 
stability to high-𝑛 MHD modes. 

• Stable region becomes wider by the “ion 
diamagnetic drift (𝜔∗𝑖)” effect analyzing 
with the stability condition[Tang NF1980 etc.] 

𝛾 ≥ 0.5𝜔∗𝑖 . 

𝜔∗𝑖 widens 
stable region 

Discrepancy between experiments and numerical 
analyses becomes larger. 
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ROTATION HAS DESTABILIZING EFFECTS ON MHD MODES 

• Plasma rotation with shear can 
destabilize PBM. 
[Snyder NF2007, Aiba NF2009] 

• This destabilization plays an 
important role on type-I ELM 
stability in JT-60U. [Aiba NF2010] 

• Rotation can destabilize  
intermediate to high-𝑛 PBM. 
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Rotation widens 
unstable region 

How does rotation act on the PBM 
stability including the 𝜔∗𝑖 effect? 
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MHD model:     𝑣𝐸 𝑣𝑡ℎ𝑖 ~𝑂 1 , 𝜔0 Ω𝑖~𝑂(𝛿)  :  
codes: ELITE[Snyder PoP2002], MISHKA[Mikhairovskii PPR2007] etc. 

𝑚𝑖𝑁
𝜕

𝜕𝑡
+ 𝑽𝑀𝐻𝐷 ⋅ 𝛻 𝑽𝑀𝐻𝐷 = 𝑱 × 𝑩 − 𝛻𝑃. 

𝜕𝑁

𝜕𝑡
+ 𝑽𝑀𝐻𝐷 ⋅ 𝛻 𝑁 + 𝑁𝛻 ⋅ 𝑽𝑀𝐻𝐷 = 0,  

𝜕𝑃

𝜕𝑡
+ 𝑽𝑀𝐻𝐷 ⋅ 𝛻 𝑃 + Γ𝑃𝛻 ⋅ 𝑽𝑀𝐻𝐷 = 0, 𝑬 + 𝑽𝑀𝐻𝐷 × 𝑩 = 0,   

Drift model [Hazeltine PR1985]:     𝑣𝐸 𝑣𝑡ℎ𝑖 ~𝑂 𝛿 , 𝜔0 Ω𝑖~𝑂(𝛿2)  

Pedestal codes: BOUT++[Dudson CPC2009], JOREK[Huysmans NF2007], etc. 

𝑚𝑖𝑁
𝜕

𝜕𝑡
+ 𝑽𝑀𝐻𝐷 ⋅ 𝛻 𝑽𝐸 + 𝑉∥𝒃 + 𝑽∗𝑖 ⋅ 𝛻 𝑽𝐸 = 𝑱 × 𝑩 − 𝛻𝑃. 

𝜕𝑁

𝜕𝑡
+ 𝑽 ⋅ 𝛻 𝑁 + 𝑁𝛻 ⋅ 𝑽 = 0,  

𝜕𝑃

𝜕𝑡
+ 𝑽𝑀𝐻𝐷 ⋅ 𝛻 𝑃 + Γ𝑃𝛻 ⋅ 𝑽𝑀𝐻𝐷 = 0, 𝑬 + 𝑽𝑀𝐻𝐷 × 𝑩 =

1

𝑒𝑁𝑍
𝛻𝑝𝑒 − 𝑱 × 𝑩 ,   

Diamagnetic MHD model [Aiba PPCF2016]: 
  𝑣𝐸 𝑣𝑡ℎ𝑖 ~𝑂 𝛿𝛼 , 𝜔0 Ω𝑖~𝑂(𝛿1+𝛼) , 0 < 𝛼 < 0.5 

𝑚𝑖𝑁
𝜕

𝜕𝑡
+ 𝑽𝑀𝐻𝐷 ⋅ 𝛻 𝑽𝐸 + 𝑉∥𝒃 + 𝑽∗𝑖 ⋅ 𝛻 𝑽𝐸 = 𝑱 × 𝑩 − 𝛻𝑃. 

𝜕𝑁

𝜕𝑡
+ 𝑽𝑀𝐻𝐷 ⋅ 𝛻 𝑁 + 𝑁𝛻 ⋅ 𝑽𝑀𝐻𝐷 = 0,  

𝜕𝑃

𝜕𝑡
+ 𝑽𝑀𝐻𝐷 ⋅ 𝛻 𝑃 + Γ𝑃𝛻 ⋅ 𝑽𝑀𝐻𝐷 = 0, 𝑬 + 𝑽𝑀𝐻𝐷 × 𝑩 = 0,   

𝑽 = 𝑽𝑀𝐻𝐷         = 𝑽𝐸 + 𝑉∥𝒃,     𝑽𝐸 =
𝑬×𝑩

𝐵2 , 

𝑁: number density, 𝑽: velocity, 𝑃: pressure, Γ: heat capacity ratio, 

𝑬: electric field, 𝑩: magnetic field, 𝑱: plasma current, 𝒃 ≡ 𝑩/𝐵, 

𝑒: elementary charge, 𝑚𝑖: ion mass, 𝑍: effective charge, 𝑝𝑖: ion pressure 

DIAMAGNETIC MHD MODEL 
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𝑽 = 𝑽𝑀𝐻𝐷 + 𝑽∗𝑖 = 𝑽𝐸 + 𝑉∥𝒃,     𝑽𝐸 =
𝑬×𝑩

𝐵2 ,   𝑽∗𝑖 =
𝑩×𝛻𝑝𝑖

𝑒𝑍𝑁𝐵2,  

𝑁: number density, 𝑽: velocity, 𝑃: pressure, Γ: heat capacity ratio, 

𝑬: electric field, 𝑩: magnetic field, 𝑱: plasma current, 𝒃 ≡ 𝑩/𝐵, 

𝑒: elementary charge, 𝑚𝑖: ion mass, 𝑍: effective charge, 𝑝𝑖: ion pressure 

Fluid models for ELM stability analysis 
 (𝑣𝐸: ExB drift vel. 𝑣thi: ion thermal vel. , Ω𝑖: Ion cyclotron freq. ) 
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EXTENDED FRIEMAN-ROTENBERG EQUATION 

By introducing plasma displacement 𝝃, the derived basic equations can be 
linearized as follows; an “extended Frieman-Rotenberg equation”. 
 

𝜌0
𝜕2𝝃

𝜕𝑡2 + 2𝜌0 𝑽0,𝑀𝐻𝐷 ⋅ 𝛻
𝜕𝝃

𝜕𝑡
+ 𝜌0 𝑽0,∗𝑖 ⋅ 𝛻

𝜕𝝃⊥

𝜕𝑡
= 𝑭𝑀𝐻𝐷 + 𝑭∗𝑖, 

 
𝑭𝑀𝐻𝐷 = 𝑱0 × 𝑩1 + (𝛻 × 𝑩1) × 𝑩0 − 𝛻𝑃1 
                +𝛻 ⊗ 𝜌0𝝃 ⊗ 𝑽0 ⋅ 𝛻 𝑽0,𝑀𝐻𝐷 − 𝜌0𝑽0 ⊗ 𝑽0,𝑀𝐻𝐷 ⋅ 𝛻 𝝃 , 

𝑭∗𝑖 =
𝜌0

2𝑒𝑍𝑒𝑓𝑓𝑁0𝐵0
2 𝛻 ⋅ 𝝃 × 𝛻𝑃0 𝑩0 − 𝑩0 ⋅ 𝛻P0 𝛻 × 𝝃 ⋅ 𝛻 𝑽0,𝑀𝐻𝐷,⊥ 

                +𝛻 ⊗ 𝜌0𝝃 ⊗ 𝑽0,∗𝑖 ⋅ 𝛻 𝑽0,𝑀𝐻𝐷 − 𝜌0𝑽0,∗𝑖 ⊗ 𝑽0,𝑀𝐻𝐷 ⋅ 𝛻 𝝃 , 

Assumptions       𝛻 ⋅ 𝝃 = 0,   𝑩 ⋅ 𝛻 𝝃 ≪ 1 

The MINERVA-DI code has been developed to solve this equation.  
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PBM STABILITY WITH 𝝎∗𝒊 IS ANALYZED  
IN A ROTATING TOKAMAK 

• PBM stability is analyzed in D-shaped (double-null) plasma. 

• Density is assumed as 𝑁 = 5.0 × 1019[1/𝑚3].  

• PBM stability is analyzed for 1 ≤ 𝑛 ≤ 40. 

𝑝 and |𝜔∗𝑖| 〈𝒋 ⋅ 𝑩〉 and 𝑞 Contours of 𝜓 
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ROTATION CAN MINIMIZE THE 𝝎∗𝒊 EFFECT ON PBM 

• Plasma rotation excites PBM, which is stabilized by 𝜔∗𝑖 in static case.  

• The threshold rotation frequency Ω𝜙 is smaller than 𝜔∗𝑖. 

• When Ω𝜙 becomes comparable to 𝜔∗𝑖, PBM stability is not affected 

so much by 𝜔∗𝑖 

Plasma rotation minimizes the 𝜔∗𝑖 effect on PBM stability.  

Ω𝜙 and |𝜔∗𝑖| 𝛾 vs 𝑛 𝛾𝑚𝑎𝑥 vs Ω𝜙/|𝜔∗𝑖,𝑚𝑎𝑥| 

7/14 TH/8-1       N. Aiba, IAEA FEC2016, 21/Oct./2016 



TYPE-I ELMY H-MODE DISCHARGE IN JT-60U 

• Plasma profiles were measured with CXRS [𝑇𝑖 , Ω𝜙(𝐶)], LiBP [𝑛𝑒], TS [𝑇𝑒]; 

note that 𝑇𝑒 profile is assumed as 𝑇𝑒 = 0.6𝑇𝑖. 

• Current density near pedestal is estimated as the bootstrap current 𝑗𝐵𝑆. 

• PBM stability is analyzed for 1 ≤ 𝑛 ≤ 40. 

𝑇𝑖 ,𝑇𝑒  E49229 𝑁𝑒 ,P  𝑗∥, 𝑞  

8/14 
8 TH/8-1       N. Aiba, IAEA FEC2016, 21/Oct./2016 



ROTATION PROFILE IS DETERMINED BASED ON  
THE NEOCLASSICAL THEORY 
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• Deuterium rotation profile is evaluated 
based on the neoclassical theory with 
MI by CHARROT code [Honda NF2013]. 

• CHARROT determines the profile by 
calculating radial electric field through 
radial force balance equation with 
measured Ω𝜙,𝑖𝑚𝑝, 𝑇𝑖𝑚𝑝, and 𝑁𝑖𝑚𝑝 

evaluated with 𝑍𝑒𝑓𝑓. 

• Both toroidal and poloidal rotation are 
taken into account in the stability 
analysis; slow poloidal rotation is 
assumed. 

Profiles of Ω𝜙 𝐶 , Ω𝜙 𝐷 , Ω𝜃(𝐷) 
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PLASMA ROTATION COUNTERACTS 𝝎∗𝒊 EFFECT 
ON PBM STABILITY BOUNDARY IN JT-60U 

• Stabilizing effect due to 𝜔∗𝑖 pushes the stability boundary 
away from the operation point. 

• Rotation realizes to bring back the boundary near the 
operation point. 
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#89709 

• Plasma profiles were measured with CXRS [𝑇𝑖 , Ω𝜙(𝐶)], HRTS[𝑛𝑒, 𝑇𝑒]. 

• Deuterium rotation and 𝑗𝐵𝑆 profiles are estimated with CHARROT. 

• High density reduces 𝑗𝐵𝑆 due to increasing collisionality. 

• The stability of 2 ≤ 𝑛 ≤ 100 modes is analyzed numerically.  

HOW ABOUT IN JET-ILW PLASMAS? 

0
 

𝑇𝑖 ,𝑇𝑒  𝑁𝑒 ,P  𝑗∥, 𝑞  
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PLASMA ROTATION CAN BRING PBM STABILITY BOUNDARY  
NEAR OPERATION POINT IN JET-ILW 
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Plasma rotation minimizes the 𝜔∗𝑖 stabilizing effect on PBM, 
and brings back the boundary near the operation point. 

Rotation plays an important role on the 
ELM stability in JT-60U and JET-ILW. 
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Pedestal can  
be high 

ELM occurs with 
small 𝛼𝑚𝑎𝑥 

Increasing 
𝑗𝑝𝑒𝑑 

Pass appears 
by controlling 
rotation 

DISCUSSION FOR GETTING HIGH PEDESTAL ROBUSTLY IN ITER 

• Trajectory during pedestal build-up doesn’t 
intersect with the stability boundary => O.K.. 

• In case trajectory intersects with the boundary, 
we have to consider how to avoid the 
situation as the JET-ILW case. 

• To make the pass to the corner, 

Increasing 𝑗𝑝𝑒𝑑  by reducing collisionality 

Seeding low-𝑍 impurity 
[Dunne EX/3-5, Giroud EX/P6-3] 

Increasing core pressure  
[Urano EX/3-4, Chapman EX3-6] 

Minimizing rotation [this work] 

Predicting rotation and analyzing the pedestal stability with the 
rotation help to obtain high pedestal robustly in ITER. 
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Stability diagram determined 
with 𝜔∗𝑖 and rotation. 
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SUMMARY 

• Diamagnetic MHD model has been developed to analyze ion 
diamagnetic drift effect on peeling-ballooning (PBM) stability in 
rotating plasmas. 

• An extended Frieman-Rotenberg equation has been derived from 
the diamagnetic MHD model. 

• MINERVA-DI code was developed to solve the equation. 

• It is found that plasma rotation can minimize the ion diamagnetic 
drift (𝜔∗𝑖) effect on PBM stability. 

• Minimization of 𝜔∗𝑖 effect by rotation plays an important role on 
PBM stability in both JT-60U and JET-ILW. 

• Stability analysis including 𝜔∗𝑖 and rotation helps to realize high 
pedestal performance robustly in ITER. 
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APPENDIX 
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APPROXIMATIONS USED FOR SIMPLIFYING THE DRIFT 
MHD MODEL 

We simplify the model with Frieman-Rotenberg formalism. 

Approximations: 

1. In Faraday’s law, non-ideal term is neglected. 
𝜕𝑩

𝜕𝑡
= 𝛻 × 𝑬 = −𝛻 × 𝑽𝑀𝐻𝐷 × 𝑩 +

1

𝑒𝑁
𝛻𝑝𝑒∥  

This approximation can be justified when 

a. Rotation is enough slow compared to ion thermal velocity. 

b. Density 𝑁 or temperature 𝑇 is constant in a plasma 

c. Functional form of 𝑁 is proportional to that of 𝑇. 

 

2. Magnetic field varies slowly 𝛻 × (𝒃/𝐵) ≪ 1.  
This helps to change the continuity equation as follows. 
 

𝐷𝑁

𝐷𝑡
 
𝑀𝐻𝐷

+ 𝑁𝛻 ⋅ 𝑽𝑀𝐻𝐷 = 0 
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POLOIDAL ROTATION CAN AFFECT EDGE MHD STABILITY 
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Difference of the mode freq. 𝑛𝜔 from the Doppler-shifted freq. 𝒌 ⋅ 𝒗 is 
essential for destabilizing edge MHD modes.[Aiba NF2011]. 

For the Fourier harmonics which satisfy 𝑚 − 𝑛𝑞 = 0, 𝑚Ω𝜃~𝑛Ω𝜙 even 

when 𝑣𝜃 = 𝑛𝑟 𝑚𝑅 𝑣𝜙~0.1𝑣𝜙 if 𝑞 = 3 and 𝑅 𝑟~3.3.  

Near rational surfaces, 𝒌 ⋅ 𝒗 ~ 0  →  Ω𝐸×𝐵 will be important. 

= 𝚤Ω∥ 𝒌 ⋅ 𝑩 𝐵 − 𝚤𝑛Ω𝐸×𝐵 

𝒌 ⋅ 𝒗 = −𝚤𝑛Ω𝜙 + 𝚤𝑚Ω𝜃 

MINERVA(-DI) can identify the poloidal rotation effect on MHD stability 
(at present, poloidal rotation effect on equilibrium is neglected.) 

Re-evaluate stability diagram with 
not only Ω𝜙 but also Ω𝜃. 

Ω∥: Freq. parallel to 𝑩 
Ω𝐸×𝐵: Freq. perp. to 𝑩 

Ω𝜙: Toroidal rotation Freq., Ω𝜃: Poloidal Rotation freq.  

𝑛: Toroidal mode num., 𝑚: poloidal mode num. 
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VALIDATION STUDY OF THE NEW MODEL FOR ELM 
STABILITY ANALYSIS IN JET-ILW 

To confirm the validity of the new model for analyzing ELM stability 
in JET-ILW, stability diagrams were made in several shots. 

Red:    unstable w/o 𝜔∗𝑖 in 
static plasmas 

Blue:   unstable with 𝜔∗𝑖 
in static plasmas 

Green: unstable with 𝜔∗𝑖 
in rotating plasmas 
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𝑁𝑒  𝑇𝑒  𝑇𝑖  Ω𝜙  

In any cases, the diamagnetic MHD model is the best to 
obtain the boundary near the operation point. 

TH/8-1       N. Aiba, IAEA FEC2016, 21/Oct./2016 



SENSITIVITY STUDY OF STABILITY ON 𝑇𝑖 PROFILE (1) 

The stability with 𝜔∗𝑖 and rotation is affected by 𝑇𝑖 profile, 
because 
1. increase of 𝜔∗𝑖 due to 

𝜔∗𝑖 =
𝑛

𝑒𝑖𝑛𝑖

𝑑𝑝𝑖

𝑑𝜓
. 

2. Increase of 𝑣𝜃 due to neoclassical theory as 

𝑣𝜃 ∝
1

𝑍𝑖

𝑑𝑇𝑖

𝑑𝜓
. 

 
Since 𝜔∗𝑖 stabilizes PBM but Ω𝜃 destabilizes it, it is necessary to 
understand the sensitivity of stability on 𝑇𝑖 profile. 
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SENSITIVITY STUDY OF STABILITY ON 𝑇𝑖 PROFILE (2) 
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• Plasma toroidal rotation contributes to shift back the 
boundary to the lower 𝛼𝑚𝑎𝑥 side. 

• In particular, with 𝑇𝑖 (v6), the boundary moves close to the 
O.P. (within 10%). 

• The stability is sensitive to 𝑇𝑖 profile near very edge; 
𝑇𝑖,𝑠𝑒𝑝 = 200eV (v5), 100eV (v6). 
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SENSITIVITY STUDY OF STABILITY ON 𝑇𝑖 PROFILE (3) 
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• By shifting the 𝑇𝑖 profile outward, the 𝛼𝑚𝑎𝑥 value increases due 

to that both 
𝑑𝑇

𝑑𝜓
 and 

𝑑𝑛

𝑑𝜓
 become large at the same radial position. 

• The stability boundaries with different 𝑇𝑖 profiles are similar to 
each other, but the O.P. moves to higher 𝛼𝑚𝑎𝑥 side. 

=> The difference between the O.P. and boundary becomes smaller  
      as the 𝑇𝑖 profile is shifted outward. 
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ELM STABILITY ANALYSIS IN JET-C WITH NEW MODEL (1) 

22 

The difference in stability determined with conventional and new methods was 
confirmed in JET-C; stability in JET-C has been well-explained with conventional 
method. 

𝑁𝑒  𝑇𝑒  𝑇𝑖  Ω𝜙  

Conventional method: 
• Ideal stability in static plasma. 
• Maximum 𝑛 number analyzed is 𝑛𝑚𝑎𝑥 = 30.  
• Sauter model determines pedestal BS current with 𝑇𝑖 = 𝑇𝑒. 
New method:  
• Diamagnetic stability with 𝜔∗𝑖 and rotation. 
• Maximum 𝑛 number analyzed is 𝑛𝑚𝑎𝑥 = 100.  
• MI model determines pedestal BS current with measured 𝑇𝑖. 
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New method agrees well with experiments, and shows the difference from 
the conventional method as follows.  

• #79498 (low density) 

 boundary is similar to the conventional one. 

 operation point approaches to the boundary. 

• #79503 (high density) 

 Boundary and operation point shift to lower 𝛼𝑚𝑎𝑥 side. 
23 

ELM stability analysis in JET-C with new model (2) 
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