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Abstract Large-scale global organisation of turbulence has attracted persistent interest in fusion plasmas
as a means to control transport and access improved confinement. It has practical consequences on zonal flow
formation and sustainment, on transport levels and on core—edge interplay. We review novel results based
on a careful confrontation between flux-driven and gradient-driven gyrokinetics using the GYSELA code and
recent experimental data. We present evidence of E x B staircase identification using state-of-the-art ultrafast
sweeping reflectometry, discuss its impact on transport near marginality. We also present a clear interplay
between core and edge regions of the plasma, discussing key aspects of the controversial ‘shortfall problem’
in the far-core, near-edge so-called No Man’s Land region.

1 Introduction

Global properties of complex systems are often influenced by the dynamics of self-orga-
nized mesoscale structures, emerging out of microscopic organisation of turbulent fluc-
tuations. We discuss here manifestations of self-organisation in core plasmas (the E x B
staircase) and of edge—core interplay and start assessing their impact on turbulent transport.
To this end we compare two modeling frameworks, using the same code GYSELA: flux-
driven (the reference case), and gradient-driven (in which self-organisation is constrained).
Transport levels, flow and shear organisation and flux-gradient relations change signifi-
cantly in realistic flux-driven conditions. We also report evidence of edge—core interplay,
with edge boundary conditions strongly impacting core turbulence and fluctuation levels.

2 Same code, two frameworks: flux- vs gradient-driven

The usual flux-gradient paradigm [1] relates local values for heat fluxes to local values
of the turbulence drive = L,,/Ly (or R/Lr in the case of Ion Temperature Gradient
(ITG) instability), with fixed mean values for the turbulence drive, i.e. fixed mean profiles.
This approach is referred to as “fixed-gradient” or “gradient-driven” (G-D) as opposed
to “flux-driven” (F-D) where both fluxes and profiles evolve constantly and are unknown
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functions of the dynamics. Here L, is the gradient length of quantity z, either density n or
temperature 7'. Formally, the flux-driven gyrokinetic equation solved in GYSELA reads:
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where [ represents the full ion distribution function, C the collision operator [2, 3] and S
the source [4]. Switching between a flux- and a gradient-driven framework is done whilst
replacing the source term in Eq.(1) by a Krook-type operator that acts as both a source or
a sink, depending on the dynamics (the sign of f — Fgp) and driving a return force with
strength % towards the chosen mean profiles Fg.p:
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with ((-)) = [dvdfde J,J -, J, and J being the velocity and space Jacobians. The
last term in Eq.(2) is usual prescription for gradient-driven models [S] so as to prevent
overdamping the zonal modes.

In practice, in order to compare flux- and gradient-driven approaches, the target distri-
bution Fgp in Eq.(2) is constructed from a saturated flux-driven distribution function. The
following procedure is applied that allows GYSELA to mimic usual computations at fixed
gradient:

1. a flux-driven computation is run until flux equilibrium. Mean density ng.p, tempera-
ture 7Tr.p and flow profiles are computed;

2. corrugations are removed from the above flux-driven mean profiles resulting in smooth
equivalent mean profiles;

3. an equivalent Maxwellian distribution Fgp is built from these smooth profiles and
imposed in Eq.(2);

4. linear stability is computed for the base state Fr.p. Unstable global modes grow with
a maximum growth rate ~y;;,, ~ 6 10~* We,is

5. the “spring stiffness” 7% in Eq.(2) has been varied between 73, /3 and 7;;,, /15. The
results discussed below are qualitatively independent of the precise choice for y~.
In the following we take % = ~;;,,/10, consistently with [5];

6. the gradient-driven calculation is compared to the reference flux-driven computation
at quasi steady-state for the flows and the fluctuations.

Note that the gradient-driven approach of Eq.(2) contains additional physics as compared to
usual gradient-driven approaches. In the latter a scale separation is performed in the equa-
tions so that formally the total f = F{, + Jf is divided into a background distribution Fy,
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fixed in time and a fluctuating part f. The mean evolution is discarded and so are the non-
linear advection terms that make it evolve. Only Jf dynamically evolves and consistency of
the performed separation of scales Jf / Fiy = o(1) has to be checked throughout the compu-
tation. In GYSELA, due to the fact that the full distribution function is evolved, the “mean
distribution” tends to change and corrugate due to the turbulent dynamics—essentially due
to the back-reaction of small turbulence scales on the larger, slower mean scales. Then
the Krook-type operator is applied, partly restoring the mean profiles. This gradient-driven
approach described by Eq.(2) thus has features of turbulence self-organisation absent when
a scale separation is performed. It is thus intermediate between flux-driven and more usual
of global gradient-driven approaches. Differences between F-D and Jf G-D approaches
are thus expected to be larger that the differences reported below.

3 Core self-organisation: meet the E x B staircase

A robust feature of flux-driven core plasma self-organisation is the observation in calcula-
tions of a self-organised mesoscale structure, referred to as the ‘E x B staircase’ [6, 7]. Nar-
row regions of corrugated mean temperature profiles and large zonal flow shear (the “risers”
of the staircase) appear with typical radial extent 6% ~ 10p,, p, being the local Larmor ra-
dius. The wider regions in-between (the “treads”) are regions of avalanche-mediated trans-
port, and are of typical radial extent A. A is mesoscale: in-between the local scale length
of the turbulence ¢, ~ 5 — 8p, and a global profile scale length Ly, 1y = {n,T}/V{n, T}
or the system size a > Ly, . Values are reported between A ~ 30p; [6, 7], ~ 50 — 70p,
[8] and up to ~ 100p; [9], often with a clear p, = p,/a dependence [6, 9]. Transport in
the ‘treads’ is reported as strongly nonlocal [6], best described by a Lévy or a Lorentzian
kernel of width A whilst the ‘risers’ correspond to regions of weak or permeable trans-
port barriers. Co-located with these barriers are turbulence-driven local corrugations of
the pressure profile that drive enduring poloidal flows, an example of synergistic interplay
between collisions and turbulence [10]. This structure has also been confirmed in several
flux-driven approaches [11, 12, 13, 14, 15, 16, 8, 9]. Further details may be found in the
recent overview [17].

Over 200 E x B staircase signatures have recently been experimentally identified [7, 9]
in a large variety of plasma parameters in drift-wave turbulence using correlation analysis
from ultrafast-sweeping reflectometry [18, 19], over extended regions of core Tore Supra
plasmas. Direct observation of mean profile corrugations is uneasy; staircases are thus
identified through observation of their successive shear layers, as shown in Fig.1. Many
of the expected features of a staircase pattern are confirmed under various experimental
plasma conditions in Tore Supra L-mode plasmas. The key signatures are: a robust pattern
of quasi-regularly spaced local reductions of the radial correlation length L., of turbulent
fluctuations, a sudden variation of their tilt across the successive staircase shear layers, no
correlation to low-order ¢ rationals and a shear flow layer width that scales with the local
sound gyroradius ~ 11p,, close to expected 67" values [7, 20]. New features also stand
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out from the compiled database of staircase observations. These are further discussed in
Ref.[9]. Interestingly, staircase observation seems to depend on the free energy source: ob-
served in near-marginal ion drift-wave turbulence, staircases seem to disappear in electron
drift-wave dominated regimes. An increased permeability of transport barrier with plasma
size p, = ps/a is also found, suggesting an unfavourable scaling of transport with p,, a be-
ing the minor radius. Of concern for large experiments, this observation opens new routes
to understanding gyro-Bohm breaking through micro-barrier permeability. These results
provide a relatively inexpensive and reliable means to characterise flow shear with high
space and time resolution that has broad applicability to characterising transport, barrier
onset and dynamics as well as transitions to regimes of improved confinement.

4 Self-organisation near criticality: impact on transport

It is important to assess the impact of staircase organisation on transport. Thus, we first
compare [21] both flux- and gradient-driven approaches Eqs(1) and (2) in the banana regime.
The striking feature in Fig.2 is that the staircase pattern that exists and endures in the flux-
driven computation is rapidly [in less than a millisecond] damped away and ultimately lost
in the gradient-driven approach. The strong inhomogeneities in the mean shear, poloidal
flow and temperature that have spontaneously appeared in the flux-driven case give way
to a more homogeneous turbulence with a strong isotropisation of the fluctuations and of
the flow structure. The PDF of the fluctuations is more skewed in the flux-driven case and
has as expected a significantly broader tail. The randomisation of the fluctuations across
the radius with no large-scale long-lived mean component in gradient-driven steady-state
contrasts with the flux-driven strongly organised flow and avalanche pattern. A follow-on
question is of course the impact that such discrepancies might generate on transport.

To this end, we compare in Fig.3 the turbulent heat fluxes in flux- and gradient-driven
regimes, respectively Qi and Q%'S. In both approaches the turbulence drive R/ L varies
with radius so that R/Ly varies between 4 and 8 between r/a = 0.3 and 0.7. The heat

4
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Figure 2: Comparison of flux-
and gradient-driven computa-
tions: no perennial structures
endure in the gradient-driven
approach, structures are more
isotropic, their propagation di-
rection is more random, mean
components are vanishing and
the staircase pattern is lost.
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fluxes in Figs.3 and 4 are the time-averaged values during 0.5ms of the heat fluxes at differ-
ent radial locations, at flux equilibrium. The shaded regions are the temporal fluctuations
during that time. We superpose in Fig.4 the PDF of staircase-related corrugations of the
mean temperature profile as a function of R/ L, thus asking in what region of turbulence
drive is the staircase most likely to be found. Let us call ‘linear threshold’ the turbulence
drive for which unstable modes start growing—in Figs.3 and 4, R/Li" ~ 3.5. Following
Ref.[1] let us call ‘non-linear threshold’ the turbulence drive at which the turbulent heat
flux suddenly increases—‘stiffness’ is the slope of that increase—and ‘marginality’ (or
‘criticality’) the turbulence drive at which the turbulent heat flux dominates over its neo-
classical counterpart. The turbulent regime starts above marginality. Similarly, the ‘Dimits
upshift’ is the region of turbulence drive in-between linear and non-linear thresholds. Sev-
eral features stand out:

e asexpected, in gradient-driven modeling a clear Dimits shift exists associated to fluc-
tuating zonal flows that lead to a low level of turbulent transport. Stiffness is large at
marginality and a smooth, monotonically increasing flux-gradient relation is found;

e in contrast in flux-driven modeling the Dimits shift (if any) is strongly reduced and
turbulent transport there is significantly larger than in the G-D case. This result still
holds at low collisionality [22]. However once in the turbulent regime, despite the
increase of R/Ly the heat flux does not further increase owing to the mean flow
regulation of transport as a result of the E x B staircase. Not detailed here, it is
worth noticing that the flux-gradient relation in the flux-driven regime is multivalued
[23] (non-monotonic) where the staircase exists, as may be expected for its formation
through negative viscosity arguments, i.e. heat accumulation despite increased drive;

¢ in-between the onset of the F-D turbulent regime and the beginning of the G-D tur-
bulent regime, the F-D heat flux in Fig.3 is strongly intermittent. Even though it
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Figure 3: Flux- and gradient-driven tur- Figure 4: The E x B staircase is a near-
bulent heat fluxes significantly differ near marginal pattern: it forms and endures in
marginal stability. a precise region of R/ Ly drive.

does not change much in amplitude when entering the staircase regime, it changes
in nature: through its shear layers, the staircase now radially organises the heat flux
and controls its dynamics;

e the staircase is a near-marginal pattern: it resides in the low-heating limit of flux-
driven forcing [7, 8]. As it requires turbulence activity to nucleate and endure, it
locates close but certainly above the onset of F-D turbulent regime. Interestingly,
though this may be fortuitous, its seems to exist close to G-D marginality.

The essential differences of a F-D regime as compared to a G-D framework are: the
sustainment of a significant turbulent activity arbitrarily close to linear threshold, strong
intermittence (its variation with R/ L is not presented here) and at larger turbulence drives
the onset of the E x B staircase. Entering the staircase regime, the system transitions from
being randomly organised everywhere and regulated by fluctuating zonal flows to being
strongly organised through mean flow patterning (the onset of the weak staircase transport
barriers). In the staircase regime flux-driven transport is reduced by a factor of 2 to 3 as
compared to the gradient-driven prediction where no staircase patterning occurs.

5 Edge—core interplay

The previous sections were mostly focused on core plasma self-organisation. We recently
upgraded GYSELA to account close to the outer edge (r/a > 1) for Scrape-Off-Layer-like
(SOL) boundary conditions. This allows us to investigate in flux-driven regimes how core
and edge may interplay. We diagnose this question whilst investigating the radial behaviour
of turbulent fluctuations.

We focus here on the impact of an edge turbulent activity on the global core—edge or-
ganisation. To this end, we run two F-D computations in Figs.5 and 6, at flux equilibrium,
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Figure 5: By changing L,, two steady- Figure 6: Edge turbulence activity impacts
state flux-driven 7 profiles are compared. flux-driven transport levels everywhere.

only changing n» = L, /Lt close to the edge: from r/a = 0.7 to 1. Ly evolves self-
consistently, L,, is fixed and allows to scan 7. The ‘reference’ case is a near-marginal in-
stability profile i up to r/a = 0.7 and unstable profiles beyond r/a > 0.7. The ‘marginal’
case has very similar profiles up to /a = 0.7, remains near-marginal up to r/a = 1 and
becomes unstable in the SOL. Remarkably the density fluctuation levels are much lower
in the marginal case, even below 7/a < 0.7 where both gradient scales lengths 7 are com-
parable. Two main conclusions seem to hold: as 1 always increases close enough to the
edge (i) spreading of near-marginal core turbulence seems of limited practical importance
as compared to the spreading of more strongly driven edge turbulence [24], (ii) core—edge
self-organisation is global so that modeling choices for edge and SOL are not innocuous
for even deep core transport properties.

6 Conclusion

Self-organisation in core plasmas has led to predicting the E x B staircase, which has
since been confirmed by other models and found experimentally through correlation of
density fluctuations. This global pattern deeply modifies near-marginal transport levels
and stiffness. Edge and SOL boundary conditions are important contributors as well to
core transport as large-scale self-organisation through edge—core interplay strongly impacts
predicted transport and fluctuation levels across the entire plasma volume.
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