Development of a Systematic, Self-consistent Algorithm for the K-DEMO Steady-state Operation Scenario

J.S. Kang¹, J.M. Park², L. Jung³, S.K. Kim¹, J. Wang¹, D. H. Na¹, C.-S. Byun¹, Y.-S. Na^{1‡}, and Y. S. Hwang^{1†}

¹Seoul National University, Seoul, Republic of Korea ²Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA ³National Fusion Research Institute, Daejeon, Republic of Korea

e-mail contact : * yhwang@snu.ac.kr, *ysna@snu.ac.kr

26th IAEA Fusion Energy Conference

Oct 22, 2016

K-DEMO Goal: Demonstrate a Net Electricity Generation

- 1st phase High B_T
- 2^{nd} phase High B_T & β_N

- Pressure Limit $\propto \mathbf{B}_{T} \cdot \mathbf{\beta}_{N} \cdot \mathbf{I}_{P}$
- $\mathbf{f}_{\mathsf{BS}} \propto \mathbf{B}_{\mathsf{T}} \cdot \mathbf{\beta}_{\mathsf{N}} / \mathbf{I}_{\mathsf{P}}$

K-DEMO Design Parameters

ΛN

	Major Radius (R)	6.8 m		
	Minor Radius (a)	2.1 m		
	Toroidal Magnetic Field	7.4 T		
	Elongation / Triangularity	2.0 / 0.6		
	β _N	< 4		
	Fusion Power (P _F)	2000 MW (1 st) 3000 MW (2 nd)		
	Fusion Gain	20		
	Divertor Operation	Double-null	< K-DEMO Magnet & Di	ivertor Analysis [1

- Size & aspect ratio similar to those of ITER & KSTAR.
- Nb₃Sn configuration/stress analysis/test fabrication.
- Tungsten mono-block type divertor, RAFM cooling tube, high pressure water-cooling.
- Ceramic pebble type breeder blanket, high pressure water cooling.

0-D System Analysis to Identify Fusion Performance & Operating Regime

[1] Kang, J.S., et al, Fusion. Eng. Des. 109-111, Part A (2016) 724.

0-D power balance

 $P_{\rm F} = 2000 \, {\rm MW}, \, {\rm Q} = 20$

$$n_{eavg} = 0.87 \times 10^{20} \, m^{-3}$$
, $T_e = 20.0 \, keV$

0-D System Analysis to Identify Fusion Performance & Operating Regime

[1] Kang, J.S., et al, Fusion. Eng. Des. 109-111, Part A (2016) 724.

 \checkmark 0-D power balance

 $P_{F} = 2000 \text{ MW}, Q = 19$

$$n_{eavg} = 1.2 \times 10^{20} \, \text{m}^{-3}, \quad T_e = 20.0 \, \text{keV}$$

Burning plasma profile effect (self H/CD) change optimum operation regime.

Need a self-consistent integrated modeling!

 \checkmark Target pressure and current profile are achieved intuitively.

<1-D KDEMO n, T, J profile[1]>

Modelling with prescribed heating schemes

- (2) 2 beams, on-axis (1.5 MeV 50 MW) off-axis (0.6 MeV 50 MW)
- (3) 2 beams, on-axis (1.3 MeV 40 MW) off axis (0.8 MeV 80 MW)
- (4)
- (5)
- (6)

Try \Rightarrow **Select the maximum fusion gain one**

Systematic approach is required!

[1] Kang, J.S., et al, Fusion. Eng. Des. 109-111, Part A (2016) 724.

• Find p & j profiles and corresponding H&CD specification to maximize Q, systematically and self-consistently.

f(p,j) = max {Q} p: pressure profile j: current profile

High performance steady state operation needs optimization of P&J profiles. Burning plasma algorithm must integrate various physics/engineering.

Optimization Algorithm Consider ConstraintsConfinementMHD stabilityH/CD

Previous Flowchart of K-DEMO Target P&J

K-DEMO Burning Plasma Target Scenario Algorithm Flowchart

✓ Confinement, Stability, and H/CD are simultaneously satisfied.

FASTRAN/IPS is Adopted for Numerical Apparatus to Implement Algorithm

Control Knobs – p_{axis}, α, β, p_{ped}, j_{axis}, j_{peak}, ρ_{peak}, ρ_{boundary}

✓ Linear Ideal MHD Evaluation with DCON[1] & MISHIKA1[2]

Glasser, A. H., et al., Bulletin of the American Physical Society Vol. 42, p. 1848 (1997).
 Mikhailovskii, A. B., et al., Plasma physics reports, 23(10), p. 844 (1997).

[3] Snyder, P. B., et al., Physics of Plasmas 9 (2002) 2037.

 P_{CON} from diffusion model & n,T profile P_{α} P_{RAD} from n, T profile(Loop 1 Result)

Loop 3: Check Self-consistency between Plasma Profiles and H/CD Configuration by Integrated Modelling

0 D

2000

20

100

12

75 %

3.10

1.3

Result

2080

18.8

110

15.5

77 %

2.8

1.2

8.3 keV

9.9·10¹⁹ m⁻³

A fully non-inductive target plasma is finally achieved.

19/21

Discussion of Derived H/CD Specification

Off-axis NB provide broad J Profile

 improved confinement.

Single 110MW 500keV NB injection

- Alignment with less-bootstrap region.
- Even half of ITER NBI beam energy.
- q_{min} > 2 is set to avoid tearing modes.

20/21

Conclusion & Future Work

- A systematic scenario optimization algorithm maximizing the fusion gain is newly established by integrating equilibrium, confinement, stability, and current drive requirement, self-consistently.
- Target pressure & current profile for K-DEMO is derived with designed algorithm.
 - ✓ fusion power of 2080 MW, fusion gain Q of 18.8 and normalized beta β_N of 2.81.

Particle Transport/plasma rotation/more detailed stability are planned.
 ✓ Particle transport and plasma rotation are also key control knobs for stable fusion power production and they will be updated to the systematic algorithm in the near future.

✓ Pedestal structure and plasma shaping optimization are expected to address more efficient/accurate target scenario.

