Development of a Systematic, Self-consistent Algorithm for the K-DEMO Steady-state Operation Scenario FIP/3-3

J.S. Kang¹, J.M. Park², L. Jung³, S.K. Kim¹, J. Wang¹, D. H. Na¹, C.-S. Byun¹, Y.–S. Na¹, and Y. S. Hwang¹ ¹SNU, Seoul, Republic of Korea ²ORNL, Oak Ridge, TN 37831, USA ³NFRI, Daejeon, Republic of Korea

K-DEMO Design Philosophy
Similar device size & aspect ratio with ITER.
Extrapolation of ITER to High Magnetic Field.
Algorithm : self-consistent with confinement, current drive, stability.
f(p,j)= max(Q) p : pressure profile j : current profile

The systematic scenario optimization algorithm subject to maximize the fusion gain is newly established.

By utilizing ITER steady-state scenario modelling tools and boundary conditions, a fully non-inductive steady state scenario is derived with 2000 MW, Q 20.2 and β_N 2.84 for K-DEMO.

