First experiments in H-mode plasmas with the Passive-**Active Multijunction (PAM) LHCD launcher in HL-2A and** impact on pedestal instabilities

A. Ekedahl¹, X.Y. Bai², B. Lu², R. Magne¹, G.L. Xiao^{2,3}, W.L. Zhong², E. Bertrand¹, Y.L. Chen², J. Cheng², Z.Y. Cui², L. Delpech¹, X.T. Ding², J.Q. Dong^{2,4}, X.R. Duan², B.B. Feng², K. Feng², J.M. Gao², G. Giruzzi¹, M. Goniche¹, J. Hillairet¹, G.T. Hoang¹, X.Q. Ji², M. Jiang², J. Liang², R. Mao², D. Mazon¹, Y. Peysson¹, J. Rao², Z.B. Shi², S.D. Song², X.M. Song², C.Wang², J.Q. Wang², H. Wang², M. Xu², L.W. Yan², Z.C. Yang², D.L. Yu², H. Zeng², B.Y. Zhang², Y.P. Zhang², Y. Zhou², X.L. Zou¹ and the HL-2A team²

¹⁾ CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France.

²⁾ Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, China. ³⁾ Department of Engineering Physics, Tsinghua University, Beijing, China. ⁴⁾ Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou, China.

The 3.7 GHz LHCD system in HL-2A

Associated Laboratory CEA/IRFM - SWIP initiated in 2013, with Lower Hybrid Current Drive (LHCD) as one of the main activities.

- Four klystrons (3.7 GHz) installed and commissioned on HL-2A [1], as part of the collaboration.
- Passive Active Multijunction (PAM) antenna designed by SWIP, assisted by IRFM. Joint experiments on LHCD and LH coupling in H-mode carried out on HL-2A [2, 3].

Coupling of LH waves in H-mode, using a PAM, demonstrated for the first time. PAM: LH launcher concept foreseen for the 2nd phase of ITER [4]

EUROfusion

2014: Commissioning on plasma, L-mode 2015: First experiments in H-mode (~ 400 kW)

s 10 obe (10¹⁷ m⁻³)

 X.Y. Bai et al., Proc. 42nd EPS Conf. (2015), paper P5.137.
X.Y. Bai, A. Ekedahl et al., submitted to Nucl. Fusion. [3] X.R. Duan et al., this conference, paper OV/4-4 [4] G.T. Hoang et al, Nucl. Fusion 49 (2009).

LH coupling experiments in H-mode

ь 8 10 n_e at launcher (10¹⁷m⁻³) [5] J. Hillairet et al, Nucl. Fusion 50 (2010)

Acknowledgments

The CEA/IRFM members warmly acknowledge the hospitality of the SWIP team during the visits for LHCD commissioning and experiments on HL-2A.

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Effect on ELMs

- ELM-frequency 7 and ELM-amplitude 1 during LHCD.
- Observed for high LH power and high density.
- Mitigation effect is synchronized with an increase of the pedestal turbulence, measured by Doppler reflectometry > Enhancement of the particle transport due to the pedestal turbulence may be the direct cause of the ELM mitigation.

LH current drive observations

Current drive effect, i.e. loop voltage drop and non-thermal EC emission, observed in L-mode.

^{0.4} r/a ^{0.6}

0.2

0.8

[6] Y. Peysson et al., Plasma Phys Control. Fusion **58** (2016).

Modelling with RT/FP-codes

Latest results

Several improvements carried out before the 2016 campaign:

- Shortened waveguide lengths → reduced transmission line losses.
- Improved control of plasma-launcher gap. Smaller gap → higher density at LH grill mouth.
- Increased reliability of RF measurements.

1 MW reached in L-mode and 900 kW in H-mode [3]. LH power helps trigger and sustain H-mode.

Summary and outlook

The 3.7 GHz LHCD system in HL-2A has reached 1 MW coupled power in L-mode and 900 kW in H-mode

- LHCD helps triggering and sustaining H-modes in HL-2A.
- Effect on ELM amplitude and ELM frequency observed in some conditions.

Plan for 2017: Install hard X-ray camera to investigate LH power deposition.

