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Abstract. In the present work, the electronic distribution function for magnetized plasma,
taking into account the electron-ion collisions is explicitly calculated.The basic equation in
this investigation is the Fokker-Planck equation where some justified approximations for
fusion and astrophysical magnetized plasmas are used. By computing the second moment of
the distribution function, we have expressed the electrons temperatures in the parallel
direction and in the perpendicular plane to the magnetic field. It has been shown that this
temperature is anisotropic and this anisotropy is due to competition between magnetic field
effect and the collisions effect.

1. Introduction

A magnetized plasma is one in which an ambient magnetic fieldis strong enough to
significantly alter the particle trajectories. This kind of plasma isa good environment for
various physical phenomenon’s which are intensively studied in literature, Alfvén wave [1],
Cyclotron instabilities [2], magnetic field reconnection [3]. The magnetized plasma presents
an anisotropy in temperature which can be interpreted in the microscopic way by an
anisotropic distribution function.Usually, in the literature, this distribution function is
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supposed a to be bi-maxwellienne: fgy = (Zn) TLT”UZexp ( 2T yexp ( 2T ).
In this paper, we aim to calculate analytically the electronstemperature anisotropy for
magnetized plasma, in the frame of the kinetic theory. This investigation can found

applications in several research axis, such in magnetic fusion experiments.

In microscopically level of magnetized plasma, there are charged particles of deferent
species in thermal motion with different velocities, each particle has a fast gyration motion
around the magnetic field with a perpendicular velocity, v,, and a parallel motion non
affected by the magnetic field. The time dependent electron velocity can be written as:

V(t) =_)V+V_l (t) ex(@ w.,t), where w., = ;—B is the electron cyclotron frequency which is
proportional to the magnetic field and it is the same for all electrons in the plasma.

In order to compute the electronic distribution function, we consider the one particle
kinetic theory with a 6D phases space: (7, )V Then, the Fokker Planck equation is the
suitable equation for describe these kind of plasmas.
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In the present investigation, we have considered two time scales for the evolution of
the electrons distribution function: a fast time scale relative to the cyclotron motion of

electrons around the magnetic field lines, ~ wi (typically w.,~1011s7! for magnetic
ce
thermonuclear fusion experiments) and an hydrodynamic slow time scale.

This paper is organized as follow: in section 2., we present the basic equationused for
this investigation. In section 3.,we compute the distribution function under some justified
approximations. In section 4.we compute the high frequency distribution function. In section
5., we compute the static distribution function. In section 6.,we compute the electrons
temperature in the parallel and the perpendicular direction of the magnetic field and we
represent the anisotropy in temperature. Finally, in sec 7., a conclusion is given for obtained
results.

2. Basic equation

The basic equation in this investigation is the Fokker-Planck ( F-P) equation. The F-P
equation can be presented for homogeneous plasma, in the presence of the Lorenz force due

to a statistic magnetic field, ﬁL = —eV_)(t) XB, taking into account the e-i collisions,
following the Braginskii notation [4]as follows:

U pE 2 o (f). (1)
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We suppose that the magnetic field is oriented in the x direction, B=B%, and the
electronsoscillate in the (y, 2 plane, where: v (t) Z%(f —iexp(i @et) . In this
geometry, the Lorentz force is presented as:

“MeWceVyL

FL:T(}] +iZ )exp Lt (2)
This force is alike to the force due to the presence of acircularly polarized laser wave in the
plasma [5,6,7,8]. Taking into account to the equation (2), the F-P equation (1) is written as:
af ce

;—%( +izhexp (iwt) = (), 3)
wheref = f(¥, 1, i6)the electrons distribution function. C,;(f) represents thee-i operator
andw,, = ;—B is the electron cyclotron frequency. We point out that equation (3) is similar to

that characterizes a homogenous plasma in interaction with a circularly polarized laser wave
[6,7]. Then we expect anisotropy in temperature due to the presence of magnetic field.

3. Distribution function

The motion of individual particle in plasma in presence of a static magnetic field,can be
decomposed in a parallel motion which is not affected by the magnetic field and a
perpendicular gyration motion. Typically the gyration period time is very small compared to
hydrodynamic evolution time of plasma. Then it is judicious to separate the time scales in the
F-P equation,(3),by supposing that the distribution function is the sum of oscillating
distribution function and a static one, so:

f(, t) =¢v, t) +Rellf' (v, 3) 4)
where f*(7, t) v )exp (Lt) (5)
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The separation of time scales in F-P equation (3), using equation (4), allows to a
system of two coupled equations: a high frequency equation representing the spatio-
temporal evolution of f" and a slow time Variation F-P equation representing the spatio-

h
temporal evolution of f¥, %—wig“ (av )exp (igt) =G, (6)
afs ce . arh a
a—i—%(Real (exp (Q@)Real{j;—y +i aLUZ)) = Cei(f ). (7)

The symbol{ ) means the average value on the cyclotron period time. Note that the average
of quantities proportional toexp (i.gt ) vanishes.

4. High frequency distribution function

h
Using equation (5), f* can be calculated from equation (6), where aaLt =i wf", as
function of f*, so
. ceVy Of°5 | . OfS .
F@ef" —Coi(f") = =5= G- +ig ) exp (icat) (8)

The collisions operator,C,;(f), 1is expressed under Landau form [9,10] in the limit of
immobile ions by:

a S
Cel(f ) = 36 (U 17251']')6%;]' : ©)
4-71'£0Te

_ —1v =/
A= 2/1e1’ Aei = otz nh =3 and v, T,/m, is the thermal
velocity. Note that in equation (9) the Einstein’s notation is used.

is the mean free path, v,;

The e-i collisions operator (9) has spherical harmonics [11,12] like proper functions. Then it
is judicious to use the spherical system (v, u =1;—", p=arct ;éx). The right hand side of

equation (8) is written as:

%exp(i @et +1 ¢ ><<(1 —u?)z (UZ_J:JF #a_fs)> (10)

ou

This shows that f" is proportional to exp(i ¢ and f° is independent on ¢p. Then it is practical to

develop f5(v) = ff(u, v) on the Legender polynomials, P;(w): f5(u, v =X P;(w)fi(v) and to
develop f(¥, 3 = f*"(u, v)exp ifa +¢), on the on the spherical harmonics, Y1 (i, ¢, of order

(L, m=1): f*(u v, p=3XY ' (u, Qf(v) =exp (i L PI(WfM(v), where Pl(u) is the
associated Legender polynomial of order (I, m=1).

Using these developments the high frequency equation, (8), can be presented as:
. ce 3 off oP
(iwe+1 (1 +1)%) TP £ () = %{(1 R (vZPl T+ uxZefe )} (1)

After some algebra using recurrence relations between Legender polynomials and associated
Legender polynomials [11,12], we have demonstrated that:

243/ o1 QL+D @L+3 @L+5-(L+D% (2l +9— (l+2)2(2l+])
sz L (1 -u®)ep, =P Y- { 2L +D @ +32(2L +9
(14D } 6fl+1+{(21—3)(21—1)(21+1) (1 -D?2L+D-(1)? (21—3)
QL+D@RL-1) RL+3 ov (21 =3) 21 —1)2(21 +1)
I1+n aff 4 , (1+20+3 ffs3 _ (1 =2)1-1) off 5
(21—1)(21+1)(21+3)}v v '(21+3)(21+5)(21+7)v v (21 -5) 21 -3)( 21 —1)” v ’ (12)
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and

—u2)3 2P fs — p1 ()2 ED
(A =p") 72 n ou fe =P X (21—5)(21—3)(21—1)ﬁ—3+

I(1-D%2@L+D @L+3-(21 3) ( —DI? 2L +3I+( DI +D 21 -1) 21 -3)

S
(2L 3)RL-D2RI+D 2L +3 fl T
I+DC+2 RI+IQRI+Y-(++D2(2L+9) RL-D+QRI+DC+DC+*L-D) o5
(21 -1) QL +1) 2L +32(21 +5H fz +1
+20+3 1 +9 s
L+3 @L+H @l +7)fl +3) (13)

By using the above equations, (12) and (13), the equation (11) is presented as follows:

5 (i e+ £10 +D) PEGOFM@) =

Wee 1 @UL+D @RI+ @L+5-(L+D?2L+9—-( +2% 2L+ I(1+1) ffn
_EZPl () <_{ (21 +D @L+32(21 +5 (21 +D @L-1) (zz+3)}v w T
{(21—3)(21—1)(21+1)—(l 1221 +D—-(D?(21 -3) (147D }vafls‘1+

(21 =3) 21 —1)2(21 +1) QL-DERL+D@2L+3 ov

L+ +3 ffya ___U2QD O,

QL+3)QRL+H QL+ dv 2l-5)@l-=3) 2l-1)  adv
A+DA+2 QRI+IQI+HY-(U+DA+D2 L4+ RI-D+RI+DU+D U +D?(2L -1

S
(21 —1) @1 +1D @1 +32(21 +9 fraat
I(1-D?@L+D QL +3—-(21 -3) ( —1)12(21+3)+(l—1)l(l+])(21—1)(21—3)fs @ +20+30+9 fs _
(21 -3) @1 D221 +1) 2L +3 -1 i+ ei+y@i+p /13
(1-3)-2) -1

(21 -5) (21 -3) (21 -1)

The projection of this equation on the associated Legender polynomial, P}( ), allows to
compute the f* as function of f;* 5, f1, f, fi1 and ¥ so:

ffw) =
L({(Z”D(Zl”) CL+5) RL-D-(1+D%21+5 QL -D-(1+2?QRIL+D @l D+l +D 2L +3 (21+5)}vafls+1 _
) (2L +1) 2L +32(21 +5 (21 —1) ov
{(zz -3) @21 1) @L+D @l +3-(1 —D2(2L +D @L +3-(D2(21 -3) @l +I+1( +1) @21 -3) 2L -1) }v affy
(21 -3) 2L -D22l+D 2L +3 ov

L+ +3 07 (12 0-D s _
@L+3QRL+H@L+7) v 2l-5)@RI-3)@l-1)  dv
(4D 1+2) QI+IQL+)-1+D (U +D? L+ CL-D+RI+D L +D  +2?(21 -1)

S —
(21 —1) QL +1) 2L +32(21 +5H fz +1
01?1 +) @L+9-@L DU DLQIIHADIAHDRA D@L 5 | _(HDUHICD g5
21 -3) @RI -D2L+D 21 +3 fl -1 2L+3 @L+9 QL +7) [ +3

32D s
(21 -5) (21 -3) 21 —1)fl —3)' (15)

This equation, the high frequency approximation, w., >v,; is used.

The first three components of f"(v) are presented as follows:

i ofs ofy ofi

V2 \525 = ov 15 v 315 dv 525

h i (840 aff ~ 60 dff 20 9fF 1260 .4 60 g , 120 S)

vV)=—-\—rv—"+—Vv———Vv—=>—— - — + — 17
f2' () V2 \6615  dv ' 315 dv 693 v 6615f3 315f1 693f5 ’ (17)
f3h(v)=
i (2898 9f; 630 9f5 30  9fF 2 Afy 5040 g 630 g 210 g
— V—+—V——— VvV =+ =V — - + . 18
\/5(31185 dv 4725 Qv 1287 9dv = 15 v 31185f4 4725f2 1287f6 (18)
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5. Static distribution function

The second term in the left hand side of the static distribution function equation, (7),
can be presented using the spherical coordinates as:

v,

e 233, (ot w ot w fh(v,u}
e (1 )Y {2l I, Tk (19)

wcev*(Real (exp (i.4t)Real< i (Uy” 28 of' (v, ‘p)t))_

The static distribution function is then presented in the spherical coordinates as:

wce 2 3/ afh(v' #)_ 'afh(vl H) fh(U, 13 a afs(v' U
o e 2 g (L ) )

We develop, as in the section 4, 5 (v, pdnthe P,(u)and f"(wv, p)onthe P}(p) so:
w 0 lh 3 3 aPll flh 3 Pllflh
T O 32 17 R Y R Pk & [ S QD L /i
2\/5{ 5, (L= 72PE(W) (1 -p?) “on v (1 —-p?) D)
=SSL+DF . (21)

After some algebra using recurrence relations betweenLegender polynomials, P;(u), and
associated Legender polynomials, P}'( ) Equation (17) is presented as follows:

_ _ _ h
Wce (Zl l{_ (1-3)1-2) -l vafl—3+

(2l-5) @L-3)@l-1)  dv

((21 BEI-DERI+DRI+I DI (12 -DEQI+D@L+I)+ U+D@L-3) QL+ [ -1)2-(21 3) @l -1) ¢ DI +D ( +2)) v aff,
(21 -3) L D22l +D 2L +3 ov
((l +D(+2 @L+D(21 +3) (21 +5) (21 =1) —( 21 AHD (L +2F (2L +9+21 1) C+D?>(A + ¢ +3 @L +D—(21 +3) (21 +5 -DI(L +D ( +2))
(21+32%2(21-1) @RI+D@L+H
A+ +2(C+3C+9 aflh+3 A+D2A+DC+3 C+D
2U+3@I+9 @L+D) ~ v (2U+3@L+5@L+7) fivs—

M3 D -2 L+ CL+D-D?*(L D21 +D RL+3 2l -3)—(21 -3) @1 -1) ( D)% (D) ¢ +D>—(21 -3) @1 +1) @I +31(1 -1)(21 —1)
(21 -3) 2L -1D22L +D 2L +3

1-3)2() -2 -1 fh B
2l-1)@l-3)@l-5) /13

@L+3 @L+5 O (L +1{1+2%+ (I +D2(1+2F1(2l 1) @L+5 1 +D3(1 +3 ( +2 @1 —1) @l +D—(21 -1) (21 +1) (21 +5) (21 +3) (L +1)
RIL-DERL+DRL+H (21 +D

SEZL+1D) B () (22)

This equation coupled with the f*(v) formula, (eqs. 15-18), allows to determinate the
different components, f;°(v), ofthe static distribution function, so:

For the zero order (I = 0)
Wee (36 Off _ 24 3ff 96 cp 36 h)_
2\/5(45v v 105 ° ov 105f3 +45f1 = 0. (23)

For the first order (I = 1)
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s _L&(ﬁ ofyl _ 120 Ofi _ 600ch . 36 h)
fr (v) T 42 9,1 (v) 525 v 315" av 315f4 szsf2 : (24)

For the second order (I = 2)

1 w 180 af 9936 af 360 Of 2160 ~p 348 .p 4—32 )
S ce YJ1 YJ3 5
2 ( ) 12+/2 94 (V) (315 v 6615 v 693 v 693 5 315 /1 6615 3 ( )

By neglecting the higher order components behand the f; component by considering that
[, L f°, this last equation can be presented as:

Yei(V) av

Note that the equation (23) presents a recurrence relation between different components of
f*. This allows to determinate the distribution function by knowledge of f; as a boundary
condition.

£ ) = 2= <+0 03702 +0. 02802 (v afO)) (26)

Physically, the zero order static distribution function corresponds to the electrons non
perturbed distribution function by the magnetic field. It can be supposed by considering the
thermodynamic equilibrium as a Maxwell function. At this order (zero) the high frequency
function vanishes.

6. The temperature anisotropy

The high frequency distribution function does not contribute to the temperature
because its average on the cyclotron period time vanishes. By limiting our development on

the Legender polynomials at the second order, the parallel temperature, T = m,v{, where
the symbol ~ means the average value on the velocities distribution, is given by:

nely=m, [ 1a7 = mm, [ i20H ) +PLGOA W) +Po(0f () Mvd
= 2mm, [ v*{f,(v) Wv — Z7m, [ v*{f,(v) v 27)

By supposing that the zero order distribution function is maxwellian
2

Sfow) = #;)Wexp (%), the second anisotropic distribution function, eq. (26), can be
t t

written as follow

£ @) = -n, 2o, 0047/— 0. 0012 ) exp (- 25). (28)

t

By computing the integral, the explicitexpression of Tjis found as:

Wce
Ty=T(1+a T) (29)
Where v,; is the collisions frequency and a = 4. 7is a constant.
The perpendicular temperature, T, = %me v4, is calculated using the same equations as:

S 1

T, =2m, [v3fd*5 =mm [(1—p2) v {fy0) +ufi(v) + 3 (312 —1) ()} dvdp =
Smme [ v*{fo(0) v — —mm, [ v*{f,(v) dv. (30)
In the case of the maxwellian isotropic distribution function, the T, is calculated as:

T, =T(1+52), (31)

Vei
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The temperature anisotropy is then given by:

- 1+a—$ce

I i

7 = [0 (32)
1 2 Vei

It is well clear that this anisotropy depends on the ratio of the cyclotron frequency to the
collisions frequency.

7. Conclusion

In conclusion, in this paper we have analytically calculated the distribution function
for highly magnetized plasma. Using this distribution function we have calculated the
temperature in the parallel direction and in the perpendicular direction. It has been shown that
the temperature is anisotropic and it is depend on the magnetic field and the collisions
frequency. In this study, we have limited our development to the second order. The plasma is
hotter in the parallel direction.

This study can found applications for several phenomenon's in magnetized plasmas
namely, transport, alfvén wave, instability. As extension to this work, we’ll calculate the
anisotropic in temperature for relativistic plasma.
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