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Abstract:

The MHD stability of ITER H-mode confinement is investigated with bootstrap current in-
cluded for equilibrium, together with the rotation and diamagnetic drift effects for stability.
This is important because the ITER pedestal has high temperature, so that the bootstrap
current and diamagnetic effects are large. We use the CORSICA code for computing the
equilibrium and AEGIS for the stability. We find that the inclusion of bootstrap current for
equilibrium calculation is critical. It can affect the MHD stability significantly. We find that
the rotation can give rise to a stabilizing effect on RWMs. We also find that the diamag-
netic drift effects can significantly reduce the RWM growthrate, but cannot fully eliminate
the unstable RWMs. Only with the rotation effects included as well, the diamagnetic drift
effects can further expand the stability parameter domain. Besides, we also investigate the
effects of the safety factor value at the pedestal on MHD stability. We demonstrate that
using the pedestal current (Jped) and pressure gradient (p′ped) alone is insufficient to draw an
universal stability diagram. The safety factor value at the pedestal top, or the core plasma
current, can also significantly affect the MHD stability conditions.

1 Introduction

The MHD stability of H-mode confinement [1] is critical to the success of ITER. It has been
studied extensively in this field [2]. Note that the ITER pedestal has high temperature,
so that the bootstrap current is large. In the earlier numerical reconstruction of tokamak
equilibrium it is found that the bootstrap current can significantly modify the equilibrium
safety factor profile, which is very important to MHD stability [3]. In our earlier work we
shown that the MHD stability in JET can be significantly affected by such a change in
the safety factor profile [4]. Also, since the pedestal pressure profile is steep and density
is low near the edge, one can expect the diamagnetic effects to become important. These
new physics concerns have motivated us to readdress the ITER MHD stability issue with
the bootstrap current, plasma rotation, and diamagnetic effects taken into account.

In the equilibrium calculation we use the CORSICA code [5] to reconstruct ITER
equilibrium, with the bootstrap current taken into account. We construct the free bound-
ary equilibria and therefore the non-up-down symmetry feature is kept. In the stability
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study we use the adaptive MHD stability code AEGIS [6], with rotation and diamagnetic
effects included.

We investigate the n = 1 resistive wall modes (RWMs) in ITER equilibrium, especially
with the rotation and diamagnetic drift effects taken into account. It is found that both
the rotation and diamagnetic drift can contribute stabilizing effects on the n = 1 RWMs.
We find that the diamagnetic drift stabilization effects can be enhanced by the rotation
effects.

Besides, we note that the effects of the pedestal current (Jped) and pressure gradient
(p′ped) on the MHD stability have been extensively exploited in this field. In this work we
demonstrate that there are other parameters that can affect the MHD stability. Especially,
we point out that the safety factor value at the pedestal top qs is another factor to affect
the system stability.

This manuscript is arranged as follows: In Sec. 2 the theoretical model and numerical
scheme are described; In Sec. 3 the rotation and diamagnetic drift effects on the n = 1
RWMs are studied; In Sec. 4 the effects of the safety factor value at the pedestal top qs
is examined. Conclusions and discussion are given in the last section.

2 Theoretical Model and Numerical Scheme

FIG. 1: ITER numerical
equilibrium configuration, with
grids packed on the rational
surfaces by the AEGIS code.

We focus on the ITER H-mode discharges. Due to the
steep profiles in the narrow pedestal and the sensitivity
of MHD stability to the quality of the MHD equilibria,
very high-accuracy free-boundary equilibria are required
(in which the safety factor q is calculated accurately be-
cause the Grad-Shafranov equation is satisfied to high
accuracy at each point in the plasma up-to the region
very near the separatrix). We calculate the necessary
high accuracy MHD equilibria using the free-boundary
CORSICA code [5] with ITER coils and plasma parame-
ters. A large number (901) of radial points packed more
in the pedestal region is adopted. A self-consistent loop
is constructed in which the CORSICA equilibrium and
the bootstrap current are iterated till convergence. The
bootstrap current is calculated from the so-called Sauter
model in Ref. [7]. This model has been favorably com-
pared with other models in Ref. [8]. We then check the accuracy to which the Grad-
Shafranov equation is satisfied at all plasma points. Resolving the edge q allows us to
resolve the high m/n modes.

The plasma cross section is shown in Fig. 1. The conformal wall is used in our
calculations. We include the bootstrap current in our equilibrium calculation. Typical
pressure (here the ratio of plasma to magnetic energies β is used) and safety factor (q)
profiles are plotted in Fig. 2 and typical total parallel current density profile is given
in Fig. 3. From Fig. 2 one can see that, taking into account the bootstrap current in
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the equilibrium calculation, a safety-factor reversal or plateau can indeed appear in the
pedestal region. We denote the safety factor value at the region where the safety factor
is flat or reversed as qs.
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FIG. 2: Pressure (β) and q profiles.
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FIG. 3: Parallel current density profile.

In our stability study we include both the rotation and diamagnetic effects. We con-
sider only the subsonic rotation case, i.e., the rotation frequency is assumed to be much
lower than the ion acoustic frequency. In this case the rotational effects of centrifugal and
Coriolis forces both on equilibrium and stability can be neglected [9, 10]. We then include
the rotational effects only through the Doppler frequency shift in the stability analysis.
To include the diamagnetic drift effects we apply the gyrokinetic theory given in Ref. [11].
Since we consider only the low frequency regime, we can exclude the wave-particle reso-
nance effects. The sound wave coupling in this frequency regime contributes only to the
so-called apparent mass effect [12]. The apparent mass effect is further enhanced by the
so-called small parallel particle speed effect [13]. Nevertheless, we consider only the fluid
apparent mass effect. As proved in Ref. [11], the finite Larmor radius effects are much
more complicated after recovering the missing terms by the earlier gyrokinetic theories.
However, if the steep pressure gradient in the pedestal is used as an auxiliary ordering, the
finite Larmor radius effects are reduced dramatically to the sole modification of the mode
frequency with the diamagnetic frequency shift: (ω + nΩ)2 → (ω + nΩ)(ω + nΩ − ω∗),
where ω is the mode frequency, Ω is the toroidal rotation frequency, and ω∗ is the ion
diamagnetic drift frequency.

In this case the basic set of equations become [11]

−ρmω̂
2ξ = δJ × B+ J × δB−∇δP, (1)

where

ω̂2 = (ω + nΩ)(ω + nΩ− ω∗),

ξ is the perpendicular field line displacement, B denotes the equilibrium magnetic field,
δB = ∇ × ξ × B is the perturbed magnetic field, J represents the equilibrium current
density, µ0δJ = ∇ × δB is the perturbed current density, µ0 is the magnetic constant, P
represents the equilibrium pressure, δP = −ξ · ∇P is the perturbed pressure of convective
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part, the perturbed quantities are tagged with δ except ξ, and ρm is the total mass, i.e., the
sum of perpendicular mass and parallel mass (i.e., the apparent mass in the perpendicular
momentum equation) [12]. We obtain Eq. (1) from the gyrokinetic theory. As pointed
out in Ref. [11], equation (1) is consistent with Braginskii’s two-fluid description.[14, 15]
This diamagnetic drift modification in Eq. (1) can be viewed as keeping the finite Larmor
radius effects in the lowest order in consideration of the pressure gradient steepness at
the pedestal [15, 11]. Note that the adaptive numerical scheme of AEGIS code allows us
to study the rotation-induced continuum damping [16].

Note that the inertia term on the left hand side of Eq. (1) can be regrouped using the
formula: ω̂2 = (ω + nΩ)(ω + nΩ − ω∗) = (ω + nΩ − ω∗/2)

2 − ω2

∗/4. Subsequently, the
quadratic form (i.e., the energy principle) can be formed from Eq. (1):

δW = δWmhd + δWflr, (2)

where

δW =
1

2

∫
dτ ρm(ω + nΩ− ω∗i/2)

2 |ξ|2 ,

δWmhd = −
1

2

∫
dτ ξ† · [δJ × B+ J × δB−∇δP ] ,

δWflr =
1

8

∫
dτ ρmω

2

∗ |ξ|
2 .

Here, dτ is the volume element and the superscript † represents the complex-conjugate.
This regroup can help to understand the rotation and diamagnetic drift effects.

3 The Rotation and Diamagnetic Drift Effects on the

Resistive Wall Modes

In this section we investigate the rotation and diamagnetic drift effects on the n = 1
resistive wall modes. The equilibrium cross section and profiles are given in Figs. 1-3.
The rotation frequency profile is assumed to be the same as the pressure profile.

First, we determine the critical wall position bc. Here, the wall position (b) is normal-
ized by the minor radius at the mid-plane. The critical wall position is defined as follows:
When the wall position is larger than bc, the system is unstable with the perfectly con-
ducting wall, otherwise stable. It is found that the critical wall position is bc = 1.5 for
equilibrium given in Figs. 1-3.

We then calculate the n = 1 resistive wall modes. The resistive wall modes only occur
in the conducting wall stability regime, i.e., b < bc. The real and imaginary parts of the
n = 1 modes are given in Figs. 4 and 5 for b = 1.49 without rotation and diamagnetic
effects included. The growthrate is plotted by the solid curve in Fig. 6, as well as the
subsequent figures in order to delineate the rotation and diamagnetic drift effects. Note
here that, as is well-known, the RWM growthrate approaches infinity at the critical wall
position.
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FIG. 4: Real part of the RWM eigen-
function.

FIG. 5: Imaginary part of the RWM
eigenfunction.

Next, we study the rotation effects. The results for rotation frequency Ω = 0.03 is
given by the dashed curve in Fig. 6. From this figure one can see that rotation can
stabilize RWMs near the critical wall position.
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FIG. 6: The RWM growthrate vs the wall position with and without rotation.

Furthermore, we investigate the diamagnetic drift effects. The diamagnetic drift fre-
quency profile is given in Fig. 7. Note that also due to the reduction of magnetic shear at
the pedestal by the bootstrap current the modes accumulate near the edge as shown in
Figs. 3 and 4. Since the diamagnetic drift frequency also peaks at the pedestal, one can
expect the ω∗ stabilization for the modes to become significant. The RWM growthrate
versus the wall position with and without the diamagnetic drift effects is plotted in Fig.
8. From this figure one can see that the diamagnetic drift reduces dramatically the RWM
growthrate, especially near the critical wall position. Nevertheless, the diamagnetic drift
alone cannot fully stabilize RWMs. The residual growing modes remain. This is because
the RWM frequency approaches zero. The inertia effects are minimized in this case. With
plasma rotation included, however, the diamagnetic drift effects are enhenced. The dia-
magnetic drift effects in the presence of rotation are also investigated. The results are
plotted respectively in Figs. 9. From these this figure one can see that the diamagnetic



TH/P1-30 6

drift effects expand the stable regions.

FIG. 7: The ion diamagnetic drift fre-
quency profile.
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FIG. 8: The RWM growthrate vs the
wall position with and without the dia-
magnetic drift effects.
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FIG. 9: The RWM growthrate vs the wall position with and without rotation and dia-
magnetic drift effects. The dotted curve corresponds to the inclusion of diamagnetic drift
effects.

4 The Effects of the Safety Factor Value at the Pedestal

In this section we investigate the effects of the safety factor value at the pedestal. The
effects of the pedestal current (Jped) and pressure gradient (p′ped) on the MHD stability
are extensively exploited in this field. In this work we demonstrate that there are other
effects can affect the MHD stability. Especially, we point out that the safety factor value
at the pedestal top qs is another factor to affect the system stability. Since the bootstrap
current at the pedestal reduces the local magnetic shear, one can expect that the infernal
mode branch resonating at qs can also play a critical role. Consequently, the edge stability
becomes to rely both on the peeling and infernal mode branches.

To prove the qs effects we construct a series of equilibria with identical pressure profiles
(see Fig. 10) and the pedestal current density profiles (see Fig. 11). The pedestal current
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FIG. 10: Pressure and q profiles.
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FIG. 11: Current density profiles.

Jped and pressure gradient p′ped remain unchanged in this series of equilibria. The only
change lies in the core plasma current as shown in Fig. 13. Consequently, the vertical
shifts of safety factor profiles result and these equilibria have therefore different qs values.
The equilibrium corresponding to Figs. 2 and 3 investigated in the previous section
corresponds to the case with qs = 3.25 in this series of equilibria. We compute the critical
wall positions for n = 1 − 3 ideal MHD external kink modes with perfectly conducting
wall. The results are given in Table 1. From this table one can see that the critical wall
position varies with the safety factor value qs at the pedestal. This shows that using
the pedestal current (Jped) and pressure gradient (p′ped) alone is insufficient to draw an
universal stability diagram. The safety factor value at the pedestal top qs needs to be
taken into account as well.

Table 1: The critical wall position dependence on qs

qs n = 1 n = 2 n = 3

3.43 1.55 1.28 1.23

3.35 1.56 1.51 1.25

3.25 1.50 2.44 1.33

3.18 1.46 1.69 1.54

5 Conclusions and Discussion

In summary we have investigated the MHD stability of ITER H-mode confinement with
the inclusions of bootstrap current for equilibrium and rotation and diamagnetic drift
effects for stability using the CORSICA and AEGIS codes. We find that the inclusion of
bootstrap current for equilibrium is critical. It can affect the MHD stability significantly.

We also investigate the rotation effects. We find that the rotation can give rise to a
stabilizing effect on RWMs. The diamagnetic drift effects are also investigated in our work.
We find that the diamagnetic drift effects can significantly reduce the RWM growthrate,
but it alone cannot fully eliminate the unstable RWMs. Only with the rotation effects
included as well, the diamagnetic drift effects can further extend the stability regime.
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Besides, we also investigate the effects of the safety factor value at the pedestal by
constructing a series of ITER equilibria with the pressure and pedestal current density
profiles kept unchanged. We demonstrate that using the pedestal current (Jped) and
pressure gradient (p′ped) alone is insufficient to draw an universal stability diagram. The
safety factor value at the pedestal top, or the core plasma current, can also significantly
affect the MHD stability conditions.

This research is supported by U. S. Department of Energy, Office of Fusion Energy
Science.
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