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The optimized stellarator Wendelstein 7-X PP

Main advantage
— Intrinsically steady-state with benign operational boundaries (w/o disruptions)

Closed magnetic surfaces /sufficiently small error fields
Reduced neoclassical transport (thermal plasma); minimization of &
Confinement of fast ion (in W7-X ~100 keV)

MHD stability at finit 5%
stability at finite /F(5%) Special property of W7-X:
Equilibrium properties at finite 5(5%): _———  Plasma and magnetic field

Low Shafranov shift, small bootstrap current as far as possible decoupled

A Sl S S o

6. Compatibility of magnetic field and exhaust
concept (in W7-X magnetic island divertor at )

7. Feasible modular coils

Main objective
— Demonstrate integrated high power, high nTz. steady-state plasma operation
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The optimized stellarator Wendelstein 7-X

Magnetic field
3T

Superconducting coils
70

Cold / total mass
425t /700t

Magnetic field energy
600 M)

Plasma volume
30 m3

Plasma duration
30 minutes

Heating power
10 MW

Maximum heat load
10 MW/m?

R Wolf, 18 October 2016 26th IAEA Fusion Energy Conference, Kyoto



The optimized stellarator Wendelstein 7-X

Magnetic field
3T

Superconducting coils
70

Cold / total mass
425t /700t

Magnetic field energy
600 M)

Plasma volume
30 m3

Plasma duration
30 minutes

Heating power
10 MW

Maximum heat load
10 MW/m?

R Wolf, 18 October 2016 26th IAEA Fusion Energy Conference, Kyoto 4



The optimized stellarator Wendelstein 7-X

* Assembly of basic
device completed in
2014

* Commissioning
2014 - 2015

* First plasma
operation
10 Dec 2015 until
10 March 2016

Bosch, PD
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Confirmation of flux surfaces and low error fields W

5/6

Rotational transform +

Limiter Shadnw\R

<r> [cmj

* Flux surfaces / field line traces measured with electron beam

* Island chain at m/n = 5/6 corresponds to +=5/6 : Movement of = 5/6 position
consistent elastic deformation of modular coils when magnetic field is applied

* From dependence of central island width of + = % configuration on deliberately applied
error field an intrinsic error field of b,, #5x10°® is deduced

R Wolf, 18 October 2016 26th IAEA Fusion Energy Conference, Kyoto



Contents

e Plasma break-down, wall-conditioning and achieved
plasma parameters

e First attempt of a global power balance
e Confinement and plasma transport

e Heating and current drive experiments
e Summary and conclusions

e Towards steady state operation
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e Plasma break-down, wall-conditioning and achieved
plasma parameters
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Plasma generation
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Boundary conditions

e Limiter plasma restricted to /P dt <2 MJ

e Six 140 GHz cw-gyrotrons for central
140 GHz ECRH at 2.5T, total power <5 MW

e 1 week baking in advance @150° C
e Start with He w/o GDC

First results
e Plasma break-down within 10ms

e Contamination of wall limits pulse length
of first discharges to 20ms (automatic stop
by sniffer interlock)

e Hundreds of short ECRH cleaning
discharges (3 days corresponding
to about 4 sec plasma operation)

< > [| € > <€ >
30s 30s 30s

= discharge length extended to ~50ms

R Wolf, 18 October 2016
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Wall conditioning W

* Wall conditions improved considerably with cumulated discharge time and GDC

* What remained throughout the campaign was the tendency for a radiation collapse
terminating the plasma as wall conditioning deteriorates during the day

* The origin of a local neutral gas pressure increase (in module 4) could not be resolved

« Eventually, 600 kW / 6 sec discharges were achieved (increasing /P dt to 4 MJ)

Normalised outgassing, (He-)ECRF pulses Dec 2015 and Jan 2016
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Plasma parameters PP
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* At the end of the first W7-X campaign 30 diagnostics were commissioned and

provided data
. _ , Pablant, EX/P5-6
* Low densities and electron heating by ECRH resulted in T, >> T,

* Results in Core Electron Root Confinement (CERC) Langenberg, EX/P5-3
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I”

A “typical” hydrogen plasma ... .

... with mid-plane
manipulator in action

Time: 348 ms after T1

W7—X EDICAM video systern  {c) IPP, Wignur RCP () o
e UIGNE
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e First attempt of a global power balance
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Contributions to / assumptions for power balance

Pheat - -P?"ad - -Plzm

|

Two Bolometer cameras
— Assuming toroidal symmetry

ECRH heating power
— Transmission efficiency 94%

800 .

400 -

—— direct way to load
—— indirect way via retrorefl.

Measured power [kW]
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W,,, from T(r) and n_(r)
- Wkln ~ 1.25 Wdla
— Impurity content neglected

IR cameras for limiter loads
— Initial assumptions on asymmetries
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Wurden, EX/P5-7
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Fair agreement between heating and loss power W

2016-03-10.034

2.0 | |

t[s]

* Power balance shows about 10 — 30% of power which is not accounted for
(difference increases with increasing heating power)

* Assumptions are only approximations
» Additional losses could e.g. come from charge exchange processes with background

heutrals
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Contents

e Confinement and plasma transport

Hirsch, EX/4-5
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Comparison with scaling of energy confinement time W

300 | | | !

Ttherm /
@ Ttherm/1.25|

Confinement times during 15t W7-X

campaign

— Best plasmas lie on 1SS04-scaling

— Only 16 days of hydrogen operation

— Bare CuCrZr walls

0 50 100 150 200 250 300 — Conditioning of wall was still ongoing;
TE,ISS04 [MS] impurity issues

At low power reduced confinement
— Radiation limit ?
— Density limit ?

R Wolf, 18 October 2016 26th IAEA Fusion Energy Conference, Kyoto 17



Core electron root confinement (CERC) W

* Deriving neoclassical transport coefficient from measurements of T- and n-profiles (using
neoclassical transport codes DKES and SFINCS)

* Radial electric field from enforcing the ambipolarity condition: 7 (E,) =Z I (E,)
25

20161009.010 (920ms)
20} R N D SR

15

' % Corr.Reflect.
"""""" —XICS

(E y (kV/m)

Kramer-Flecken, EX/P5-4

* Clear evidence for core electron root confinement (E, > 0): Region of improved
confinement, however, covers only a small fraction of the plasma volume

* Confinement shows only weak dependence on optimization parameter &, which is
consistent with \/v-transport regime in the presence of an electric field

R Wolf, 18 October 2016
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Comparison with scaling of energy confinement time W
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Confinement times during 15t W7-X

campaign

— Best plasma lie on ISS04-scaling

— Only 16 days of hydrogen operation

— Bare CuCrZr walls

— Conditioning of wall was still ongoing;
impurity issues

R Wolf, 18 October 2016
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Comparison with scaling of energy confinement time W
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Heating and current drive experiments
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Demonstration of O2-ECRH

* Standard heating scenario for first campaign: 2" harmonic X-mode

» Densities between 1.2x10%°m3 and 2.4 x10%°m-3 require 02-heating scheme

* Because of unfavourable temperature scaling of neoclassical confinement, optimum

confinement conditions require high plasma density

* At low power single pass absorption up to 70% measured at 5 keV comparing ECA with

and w/o plasma agrees well
with theoretical predictions

* Multi-pass absorption
scheme gives an overall
absorption value of 95%

Moseev, EX/P5-11
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Demonstration of 02-ECRH PP
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* For T, > 5 keV simultaneous X2-
and O2-heating

* Finally, sustainment of plasma
only applying O2-heating
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=> nearly 95% absorption
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Current drive experiments PP
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* Remember: Low shear z-profile with +< 1 \/ —> \f\j
e Central Co-ECCD increases +
e Crashes in central T, triggered by magnetic resonances generated by -change ?
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Summary and conclusions PP

The objective of Wendelstein 7-X is to demonstrate that the steady-state

stellarator confinement concept fulfils the requirements for the development to
a fusion power plant

» Steady-state operation of a high-power, high performance plasma
The superconducting stellarator Wendelstein 7-X was successfully commissioned,
first plasma experiments were very successful

» At Py 4 MW, T, #8 keV, T,y #2.2 keV, n,, #4.2-:10°m3, ﬁ'ledl ~3.6:10°m™
achieved simultaneously

> Discharges lasting up to 6 sec (/Pdt <4 MJ)
» Integral commissioning including 30 plasma diagnostics and 5 MW of ECRH

» A comprehensive physics programme has been conducted with many interesting
results (about half of the 900 discharges dedicated to physics studies)

» This forms a good basis for the continuing completion of the device towards full
steady-state capability

R Wolf, 18 October 2016 26th IAEA Fusion Energy Conference, Kyoto 25



Many more results reported at this conference W

Device commissioning

H.-S. Bosch et al., “Final integration, commissioning and start of the Wendelstein 7-X
stellarator operation”, FIP (post deadline)

Heating and confinement

M. Hirsch et al., “Confinement in Wendelstein 7-X Limiter Plasmas”, EX/4-5

J. Geiger et al., “Plasma Effects in Full-Field MHD-Equilibrium Calculations for W7-X”,
TH/P1-1

N. Pablant et al., “Investigation of initial plasma parameters on the Wendelstein 7-X
stellarator using the x-ray imaging crystal spectrometer”, EX/P5-6

A. Langenberg, “Minerva Bayesian Analysis of X-ray Imaging Spectrometer Data for
Temperature and Density Profile Inference at Wendelstein 7-X”, EX/P5-3

D. Moseev, “Application of the ECRH radiation for plasma diagnosis in Wendelstein 7-X”,
EX/P5-11

S. Marsen et al., “First Results from Protective ECRH Diagnostics for Wendelstein 7-X”,
EX/P5-13

J. Ongena et al., “Physics and applications of ICRH on W7-X", EX/P5-12

Y. Kazakov, “ICRH Scenarios for Fast-lon Generation in Wendelstein 7-X“, TH/P4-22
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Many more results reported at this conference W

Plasma transport

— 0. Grulke et al., “Transport studies during the first campaign of Wendelstein 7-X”,
EX/P5-14

— A. Kramer-Flecken et al., “Investigation of turbulence rotation in limiter plasmas at W7-X
with a new installed Poloidal Correlation Reflectometry”, EX/P5-4

Heat load distribution on limiters and error field experiments

— S. Lazerson et al., “Error field measurement, correction and heat flux balancing on
Wendelstein 7-X”, EX/P5-5

— G. Wurden et al., “Limiter observations during W7-X first plasmas”, EX/P5-7

— S. Bozhenkov et al., “Enhancement of W7-X performance by symmetrization of limiter
loads with error field correction coils”, EX/P5-8

Plasma edge characterization and plasma wall interaction

— P. Drews et al., “Measurement of the plasma edge profiles using the combined probe on
W7-X ", EX/P5-9

— F. Effenberg et al., “Numerical investigation of 3-D plasma edge transport and heat fluxes

including impurity effects in Wendelstein 7-X start-up plasmas with EMC3-Eirene”,
TH/P6-11
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Special properties of the W7-X limiter configuration

80

o
o

N e
o o
Connection length Lc [m]

|
{
{
l 0
Affected by ... L. short compared to divertor phase
... rotational transform Three distinct regions on limiter

... cross-field transport Bozhenkov, EX/P5-8

... accuracy of limiter positions

.. intrinsic error fields and application of error field correction coils Lazerson, EX/P5-5
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e Towards steady state operation
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Towards steady-state operation

2015/ 2016
5 MW

4 M)

6s

Uncooled
graphite
limiters

CuCrZr surfaces

Steel panels
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Towards steady-state operation PP

2015/ 2016
5 MW

4 M)

6s

N

2017 / 2018
10 MW
80 MJ
10 s

Uncooled
graphite
divertor

Graphite heat

shields and
baffles Ongena, EX/P5-12
Steel panels Kazakov, TH/P4-12
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Towards steady-state operation

2015/ 2016
5 MW
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N

2017 / 2018
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Uncooled
graphite
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baffles

Steel panels
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Towards steady-state operation

2015/ 2016 2017 / 2018

5 MW :> 10 MW >
4 MJ 80 MJ

6s 10 s

Water cooled
10 M

-l“&

- ———
"‘

__._’_

2020 ...

10 MW...20 MW
18 GJ

30 minutes

‘ Actively cooled

steady state high
heat flux divertor
-10 MW/m?2 -

Graphite heat
shields and

baffles

Steel panels

R Wolf, 18 October 2016

26th IAEA Fusion Energy Conference, Kyoto 33



Towards steady-state operation

2015/ 2016
5 MW

4 M)

6s

N

2017 / 2018 2020 ...

380 MJ 18 GJ

10 MW > 10 MW...20 MW j‘>

10 s 30 minutes

Increase of
heating
power

Tungsten
wall

www.helmholtz.de/fileadmin
/user_upload/publikationen/
Helmholtz_Roadmap_ 2015 _
web_korr_150921.pdf

R Wolf, 18 October 2016

26th IAEA Fusion Energy Conference, Kyoto

34



Acknowledgements W

This work has been carried out within the framework of the EUROfusion
Consortium and has received funding from the Euratom research and
training programme 2014-2018 under grant agreement No 633053. The
views and opinions expressed herein do not necessarily reflect those of
the European Commission.

R Wolf, 18 October 2016 26th IAEA Fusion Energy Conference, Kyoto 35



