

Bongard *et al.*, EX/P4-51: ELM Characterization and Dynamics at Near-Unity A in the Pegasus ST

- Scientific Quality: Recent Achievements
 - First access to, characterization of ELMs at ultra-low A < 1.3 ST geometry
 - Small (Type III-like) and large (Type I-like) ELMs observed
 - Toroidal mode number ranges in agreement with those measured on NSTX at A \sim 1.3
 - Multiple unstable n measured during ELM crashes: simultaneously unstable peelingballooning modes
 - Low $B_{\scriptscriptstyle T}$ and edge $T_{\scriptscriptstyle e}$ permit detailed edge pedestal measurements with probes
 - First measurements of nonlinear edge current dynamics during single ELM events
 - Local $J_{\phi}(R,t)$ shows current-carrying filaments are generated and expelled in complex multimodal collapse
 - Similar to features in ELM simulations, electromagnetic blob transport theory
 - 3D field application from local edge current injection may alter ELM stability
- Relevance to Fusion Energy: Critical Issues Addressed
 - ITER requires ELM suppression based on validated physics basis to mitigate deleterious plasma-material interactions
 - Edge pedestal profile measurements relevant to validating nonlinear ELM physics models of ELM onset, heat deposition, and mitigation mechanisms
 - Spatially- and temporally-resolved edge current density measurements through ELM cycle key experimental requirement
- Supporting Comments: Next Steps
 - Simplified edge access at $A \sim 1$ in Pegasus can provide a unique test bed for validating peeling-ballooning stability, ELM dynamics, and ELM mitigation through high-resolution pedestal measurements

ELM Magnetic n Distributions

Thome, *et al.*, Phys. Rev. Lett. 116, 175001 (2016) Thome, *et al.*, Nucl. Fusion 2016 (in press)