

Progress of experimental study on negative hydrogen ion production and extraction

M. Kisaki¹, K. Tsumori^{1,2}, S. Geng², K. Ikeda¹, H. Nakano^{1,2}, M. Osakabe^{1,2}, K. Nagaoka¹, and Y. Takeiri^{1,2}

¹National Institute for Fusion Science, National Institutes of Natural Sciences ²SOKENDAI (The Graduate University for Advanced Studies)

Contents

Performance of negative-ion-based NBI in LHD

- •Research activities for further improvement of N-NBI
- Improvement of negative ion source
 - Engineering approach
 - Physics approach
- Summary

Negative-ion-based NBIs are utilized as main heating device in LHD

Negative-ion-based NBIs are utilized as main heating device in LHD

- Total injection power with N-NBIs has exceeded 15 MW by optimizing caesium dose and beam control.
- •The H⁻ current density has reached 340 A/m² with divergence of 5 mrad, and the values are <u>comparable</u> with the targets of ITER NBI.

Research activities for further improvement of N-NBI

Deuterium plasma operation in LHD

•Negative ion current decreases according to Child-Langmuir law.

- •Co-extracted electron current increases.
- ➔increases heat load on acceleration grids
- → degrades voltage holding capability.

Engineering approach

modification of accelerator

reduction of grid heat load and improvement of voltage holding capability

Physics approach

measurement of negative ion source plasma

→clarification of negative ion behavior

Engineering approach Modification of accelerator

Modification of accelerator

Installation of field limiting ring

The field limiting ring was installed inside accelerator to moderate

the local electric field (8.14 kV/mm \rightarrow 7.0 kV/mm).

•Change of the hole shape on grounded grid (GG)

Modification of accelerator

Installation of field limiting ring

The field limiting ring was installed inside accelerator to moderate the local electric field (8.14 kV/mm \rightarrow 7.0 kV/mm).

•Change of the hole shape on grounded grid (GG)

Improved performance of N-NBI in LHD

The voltage holding capability is improved especially at high acceleration voltage.

The heat load on GG is reduced by 40%.

8

H⁻ production efficiency is enhanced by just modifying the accelerator

Physics approach •Clarification of extraction process of H⁻

Extraction process of H⁻ has not been clarified yet

 H⁻ is produced on the surface of grid metal with Cs seeding.
 Investigation of H⁻ dynamics in order to clarify the extraction process of H⁻

Improvement of H⁻ extraction efficiency

Discharge chamber:

- •filament-arc discharge with Cs seeing
- •1/2 volume of LHD N-NBI

Discharge chamber:

•filament-arc discharge

with Cs seeing

•1/2 volume of LHD N-NBI

Accelerator:

Formation of negative-ion rich plasma was found

Formation of negative-ion rich plasma was found

- At later phase of Cs conditioning, Langmuir probe signal became symmetric.
- •What causes formation of negative-ion rich plasma?

[2] Y. Takeiri, et. al., AIP conf. proc. 1655, 060004 (2015).

EDM field plays an important role in suppression of electron near PG

EDM field plays an important role in suppression of electron near PG

EDM field plays an important role in suppression of electron near PG

Negative-ion rich plasma is formed near PG aperture.
 What happens in negative-ion rich plasma with beam extraction?²²

Response of H⁻ to beam extraction

spatial distribution of H⁻ response?

*n*_{H-} decreases on widespread area above PG apertures

[4] K. Ikeda, et. al., New J. Phys. **15**, 103026 (2013).

Extraction process of H⁻ was clarified for the first time

Directional photo-detachment measurement revealed the H⁻ flow structure.

[5] S. Geng, et. al., Fusion Engineering and Design (to be submitted).

Extraction process of H⁻ was clarified for the first time

The surfaced produced H⁻ is mainly extracted after the process of spreading over the bulk plasma.
 → <u>The enhancement of n_H in region away from PG is also important.</u>26

[5] S. Geng, et. al., Fusion Engineering and Design (to be submitted).

Summary

Dedicated experiment were conducted in order to develop high performance negative ion source.

Engineering approach

- Voltage holding capability was improved and heat load on the GG was reduced.
- H⁻ production efficiency was improved by just modifying the accelerator.

Physics approach

- Electron transport to PG aperture is suppressed by EDM field
- Negative-ion rich plasma is formed inside the loop of EDM field.
- Extraction process of H⁻ was experimentally clarified for the first time. 27