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Abstract. The study is devoted to theoretical description of plasma stability in toroidal fusion systems with a 

resistive wall. Its aim is elimination of contradictions between different approaches and between theory and 

experiment. It is focused on the Pfirsch-Tasso approach originated from the paper published in 1971 (Nuclear 

Fusion, p. 259). The main relations have been given there without detailed proofs. Here, a missing chain of 

derivations is restored and earlier unknown constraints that restrict the applicability of the Pfirsch-Tasso energy 

principle are established. Its replacement is proposed. The new result is free from the constraints implicitly 

imposed in the Pfirsch-Tasso models. It eliminates the contradictions and can be used with any plasma model 

(not necessarily ideal) and for arbitrary perturbations. The proposed extensions allow applications for analysis of 

the rotational stabilization and optimization of the ITER scenarios.  

1. Introduction 

The main goal of this study is the revision of the Pfirsch-Tasso approach originating from the 

paper [1] where a famous theorem on MHD-instability of plasmas with resistive walls is 

presented (MHD: magnetohydrodynamics). It is based on the energy relation postulated in [1] 

and later applied in [2–4] as if already proved, though its derivation has been only briefly 

outlined. The paper [1] was published in 1971, but since then the proposed model and 

conclusions have never been analyzed, confirmed or corrected by independent researchers. 

This task is addressed here. 

The original theorem says [1] that an MHD-unstable configuration with a dissipationless 

plasma surrounded by vacuum and possibly superconducting walls cannot be stabilized by 

introducing walls of finite electrical conductivity. In [1], a static plasma was implied, but an 

extension in [3] led to the enforced conclusion that in the absence of dissipation in the plasma 

such as viscosity, it is expected that the flow cannot stabilize the system. According to these 

statements, the wall stabilization must be negligibly weak in tokamaks. Actually, it is quite 

strong in experiments which makes it a viable concept for ITER [5] and JT-60SA [6]. This 

discrepancy is complemented by disagreements with a number of theoretical studies on the 

plasma rotation effect on the stability. Such contradictions are not rare [7, 8], but still remain 

unresolved. This necessitates a revision of the existing theory. Our study is focused on the 

Pfirsch-Tasso approach [1–4]. The purpose is to reveal its inherent limitations and eliminate 

them by proper improvements. 

2. The model and formulation of the problem  

A toroidal plasma separated from the vacuum vessel by a vacuum gap is considered. The 

important differences from the classical stability approaches [9–12] are that the vessel wall is 

not assumed ideal, and no particular assumptions on the plasma dynamics are introduced at 

the start of derivations. The latter allows to couple the final result to any plasma model, as 
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explained in [8]. Alternatively, the remaining freedom can be used for incorporation of 

experimental data when theoretical elements are unconstrained or, possibly, unreliable. At 

such formulation, the plasma-wall electromagnetic interaction is treated before specifying the 

plasma model. Accordingly, the sequence of derivations is opposite to that in [9–12]: the 

emphasis is laid on establishing that part of the energy balance which represents the outer 

region with dissipation in the conducting structures (traditionally called ‘wall’).  

We start the stability analysis from the linearized force-balance equation  

F
ξ
2

2

0
t

      (1) 

supplemented by the Maxwell equations 

0B ,      (2) 

Bj ,      (3) 

t/BE      (4) 

and the Ohm’s law for the resistive wall 

Ej .      (5) 

These are the same equations as in [1–4] and in various models used in the resistive wall 

mode (RWM) stability studies [7, 8]. Here 0  is the unperturbed plasma mass density, ξ  is 

the displacement from equilibrium, t  is the time, F  is the force operator, bBB 0  with 

0B  the stationary equilibrium magnetic field ( 0/0 tB ) and  

ABBb 0       (6) 

the time-varying magnetic perturbation, A  is the vector potential under the gauge condition 

0A  adopted in [1–4], j  is the current density, E  is the electric field, and  is the 

electric conductivity of the wall ( 0  in vacuum). The perturbations of electromagnetic 

quantities are related by 

Abj
~

,     (7) 

where, according to (4)–(6), the induced currents in the wall must be subject to 

Aj ~
.      (8) 

In [1–4] it is stated that the consequence of these equations is  
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the dot means the time derivative, the subscripts pl and or denote, respectively, the plasma 

and the region outer to the plasma, and, as in [1–3], 

or

or dVμημη ),( .      (12) 

Next we discuss the features of (9). Then we perform the derivations to show that a direct 

consequence of (1)–(5) must differ from (9). A new result will be a generalization of (9). 
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3. Discussion of the Pfirsch-Tasso relation (9) 

Equations (9)–(11) are equivalent to Eqs. (4) in [1] with two minor differences in the 

notations. Specifically, we introduced the perturbed current density j
~

 in (11) instead of 

A  used in formulas in [1–3]. This is done to explicitly show that W  in the Pfirsch-

Tasso model depends on j
~

 in the wall, while the classical stability theory [9–12] was 

developed for the case with 0)
~

,( orjA , i.e. either without wall, when 0
~
j , or in the ideal-

wall limit, when j
~

 becomes a surface current. Also, our F  corresponds to F  in [1,2]. 

The first term in W  defined by (11) coincides with the “potential energy” (denoted by W  in 

[10] or W  in [9]) in the standard MHD stability models with an ideal wall. It also clearly 

resembles W  in [11] with Fξ
*  instead of Fξ  in (11).  

However, at 0
~
j  in the wall, the second term in (11) makes thus constructed W  different 

from the energy functionals used in the traditional stability approaches. 

Possible advantages of introducing W  by (11) have never been demonstrated, and a full 

derivation of (9) with all theoretical details has never been attempted. Maybe, these are the 

reasons why the applications based on (9) are quite rare, see [2–4] and, for comparison, the 

reviews of alternative approaches in [7] and [8].  

Equation (9) looks simple and elegant, except for the presence of the “resistive” terms in both 

W  and the right-hand side. Another attractive feature is that Eq. (9) appears [1, 2] from (1) as 

straightforwardly derived by integrations shown in (11). It is implied in [1] and directly stated 

in [2] that F  in (1) is the well-known stability operator of ideal MHD, but definition (11) 

does not rely on any specific property of F . From explanations of the actions in [1–3] and 

from the result (9) itself it seems that F  can be arbitrary. This idea is supported by the 

discussion in [3] where the same relation (9) is proposed for the plasma with stationary flows, 

when F  becomes the Frieman-Rotenberg [12] operator. In [2] it is used assuming 0/ t . 

In the standard stability theory [9–11] for the plasma subject to the ideal MHD constraints, the 

proof of (9) at 0),( orAA   (no wall or ideal wall) is essentially based on self-adjointness of 

the force operator F . If we start derivations from (1) and follow the well developed 

procedure, we find that (9) cannot be obtained without this property. If it has been implicitly 

used on the way to (9) in [1–4], we also need a proof that neither the wall resistivity, nor the 

plasma flow would spoil it. This was not discussed in [1–4], even though the negative answer 

for the Frieman-Rotenberg operator is well known [12, 13].  

The latter arguments could be of less importance if the ‘kinetic energy’ K  in (9) would be 

neglected. Disregard of K  is acceptable in the theory of relatively slow modes such as 

conventional RWMs [5, 7, 8]. Then the terms with or)
~

,( jA  in (11) and the right-hand side in 

(9) become essential. Therefore, as a first step, we have to analyze them and assess whether 

they adequately reproduce the resistive wall effects in (9).  

4. Derivations  

In the pioneering Pfirsch-Tasso paper [1], the modified energy principle (9) with a resistive 

wall is just postulated: it appears as Eq. (4) there without derivations. Later this relation from 

[1] has been used in [2–4] as if already established. No mathematical arguments have been 

presented to justify applications of (9) for the cases with time-dependent conductivity of the 

wall in [2], stationary plasma flows in [3] and plasma stability control by external coils in [4].  
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The only explanation is given in [3], where the transition from (1) to (9) is described as taking 

the scalar product of Eq. (1) with t/ξ  and integrating over the plasma volume plus similar 

actions with the Ohm’s law (8) for conductors in the outer region, multiplied by A . However, 

one can easily see that these actions do not lead to (9).  

To get a correct replacement of (9), one can follow the same route as in the classical MHD 

stability theory [9–11] and incorporate the resistive wall as described, for example, in [8]. 

With such theoretical footing, the mathematics is not difficult. An important point is that we 

need a result in the form allowing easy comparison with the Pfirsch-Tasso relation (9).  

The latter and the fact that K  must be small for RWMs imply that, from three quantities in 

(9), we should consider W  the most important and find a way that would yield the 

combination (11). The presence of Fξ  in (11) suggests that we have to start by multiplying 

(1) by ξ  (instead of t/ξ  proposed in [3]) and integrating afterwards over the plasma 

volume. The result 
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is easily transformed into 
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where definitions (10) and (11) have been used. Then after taking the time derivative we 

obtain (at 0/0 t ) 
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Since in the outer region with (8) we have 
2~

AjA   and, accordingly, 
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equation (15) can be cast in the form 
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The last equality here is obtained with (8). The term with t/  is retained in order to cover 

the case with time-dependent wall resistivity discussed in [2]. We only note that such term is 

absent in [2]. Below we treat  as a constant, 0/ t , which is natural in practical tasks. 

The operations leading from (13) to (18) do not rely on any property of F . Therefore, 

equation (18) must be valid for any F  in (1). Note that, to get the functional W  defined by 

(11), we simply add or)
~

,( jA  to the both sides of (13). The choice of this particular quantity in 

[1–3] has not been unexplained. Such transformation of (13) can be done with anything else 

instead of or)
~

,( jA , if we find it necessary or useful. This freedom can be potentially used to 
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gain a better form of the final relation. For example, if the target equality must be precisely 

(9) with only or),( AA   on the right-hand side, we have to replace or)
~

,( jA  in (11) by  

dtdtI ororor ),(22)
~

( AAjA  .   (20) 

These are purely theoretical arguments. Next we have to find the implications. 

5. Comparison of (9) and (18) 

Our equation (18) looks closely similar to the key relation (9) of the Pfirsch-Tasso approach 

[1–4], but contains two additional terms, plI  and orI . It is clear that 0orpl II  for ξ  and A  

)exp( t . Then equations (18) and (9) become identical. However, for perturbations like 

)exp()exp( 2211 txtxx      (21) 

we would obtain 0orI  because  

txxxxx )exp()( 21

2

2121
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This proves that equations (18) and (9) may be different. 

Before elaborating this point, let us note that plI  defined by (16) must be small for slow 

modes such as RWMs [5, 7, 8]. Here the same arguments are applied as those validating the 

disregard of the kinetic energy K  (or its equivalents) in theoretical studies of RWMs [7, 8]. 

Therefore, when the wall resistivity affects the plasma stability, orI  should be considered the 

main additional term in (18) compared to (9).  

A complete theoretical analysis of the functional plI  should be done by using the expression 

pl

pl dVI )(
2

1
FξFξ       (23) 

obtained from (16) with (1). It is known that, irrespective of the time dependence of ξ , such 

0plI  in the standard ideal MHD stability theory [9–11]. Precisely, this is true for the ideal 

plasma perturbed from the static equilibrium, if, in addition, 0  (no wall) or 0/ tA  in 

the wall (ideally conducting wall). Then )(ξFF id  with 

00

~~ BjbjF pid ,     (24) 

0

~ ppp  the pressure perturbation and 00 Bj  the equilibrium current. The property 

0plI  or, more general, 

0)}()({
pl

idid dVηFξξFη ,    (25) 

where both ξ  and η  are the solutions of (1) with idFF  under the ideal-wall boundary 

conditions, plays a special role in the stability studies based on the ideal MHD model for a 

static plasma. The proofs of (25) in [9–11] cannot be directly extended to the plasmas with 

stationary flows, but the non-self-adjointness of the force operator in this case can be 

elegantly accommodated as described in [13], though again under the ideal-wall assumption.  

Here we assume the wall resistive and up to now do not impose any restriction on F . It can 

differ from idF  defined by (24) even for the ideal plasma if the plasma rotation is allowed [3, 
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12, 13]. Therefore, one cannot always expect that 0plI , though it must be a reasonable 

approximation for slow modes at any idFF , see equation (16). 

Situation is different with orI . Consider a rotating mode with 

)(cos0 tnAA ,     (26) 

where  is the angular frequency of the mode rotation along the toroidal angle , n  is the 

toroidal wave number, and 0A  is the amplitude independent of  and t . This is clearly a 

particular case of (21) with in21 . Then we obtain for an axisymmetric wall: 

ororor

n
I ),(

2
),( 00

22

AAAA  .    (27) 

This result proves that orI  can give an essential contribution into the right-hand side of (18). 

Its absence in the Pfirsch-Tasso expression (9) reduces the applicability of the latter to 

analysis of the modes with )exp( t  dependence only. This has not been explained in [1–4]. 

On the contrary, (9) is always presented [1–4] as a general relation without any mentioning of 

its inherent limitations. 

Note that (27) is equivalent to 0)
~

( orjA , though both A  and j
~

 are nonzero. We also 

obtain 0plI  for the rotating perturbations described by (26). Then equation (18) reduces to 

0)( WK
dt

d
,     (28) 

while the Pfirsch-Tasso energy relation (9) gives us an essentially different result: 

0),(
2

)( 00

22

or

n
WK

dt

d
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The former is compatible with (26) and 0/0 tA , while the latter is not. In other words, 

equation (29) does not allow existence of a steady state with a rotating mode like (26).  

Such modes, however, often appear in tokamaks [5, 7, 14]. An excellent example is the edge 

harmonic oscillation (EHO), which is a property of the quiescent H-mode (QH-mode) 

observed on several tokamaks [15], see also reviews in [8, 16]. The EHOs are registered by 

the magnetic probes near the wall [15]. If so, their interaction with the wall must provide 

0),( 00 orAA , which is an essential part in the discussion based on (26) and (27). 

We can conclude that the most important difference between (9) and (18) comes from orI  in 

(18). This term is absent in (9) and it never appeared in the Pfirsch-Tasso approach. Perhaps, 

some assumptions (like )exp( t  dependence of perturbations) have been implicitly involved, 

but this fact has not been explained in [1–4]. According to (8) and (19), for perturbations with 

exponential growth/decay we get 0orI . Then the Pfirsch-Tasso relation (9) must be valid. 

Applicability of (9) in other cases (with nonexponential, e.g., algebraic growth rate mentioned 

in [2]) remains an open question. We proved that it is certainly incorrect for the rotating 

perturbations like (26). This is sufficient for disproof of the conclusion of [3] that the flow 

cannot stabilize the system. At least, it can be called unproved in [3]. 

From theoretical viewpoint, the above demonstration of non-applicability of (9) for 

perturbations described by (26) could be a solid argument if (26) would be indeed a solution 
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of (1). Here we suggest that it must be so because of EHOs and other rotating perturbations 

observed in experiments. If some force operator F  in (1) does not allow such solutions, it 

should be replaced by something else. Let us remind that (18) is obtained without specifying 

F , and the origin and use of (9) in [1–3] seems to be free from limitations on F  that appear 

as a parameter in (1). That is why we are not restricted by the conventional ideal MHD. 

6. The Pfirsch-Tasso energy functional 

Assume that nonid FFF , where nonF  describes the difference of F  from the ideal MHD 

force operator idF  given by (24). Then 

pl

pleenonsp
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where 

pl
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pl

nonnon dVW Fξ
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the subscripts i and e denote, respectively, the inner and outer regions with respect to the 

plasma boundary plS . Note that (31) and (32) are the standard definitions of the energy 

functionals in the ideal MHD stability theory [9–11]. With )( 0Bξb  and 

ξξ div~
00 ppp , which is valid for the ideal plasma, they give the well-known 

expressions for pW  and sW , see [9–11]. However, for a non-ideal plasma with other relations 

for b  and p~  the results will different. 

Introducing some ‘vector-potential’ q  outside the plasma subject to the boundary condition  

eplpl 0)( Bnξqn     (34) 

on the plasma surface, we can transform the last term in (30) by the formula 

wall

m
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plee dVWd jqSξBb
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This allows to cast (30) in the form  

nonmsp

wallpl

WWWWdVdV jqFξ
~

2

1

2

1
.   (37) 

With Aq , equation (34) reproduces the standard matching [9–11] at the plasma boundary, 

when the plasma does not rotate and is treated as ideally conducting. In this case, substitution 

Aq  turns mW  into the perturbation-produced magnetic energy in the space outside the 

plasma. This space would be just the plasma-wall gap, if the wall is also ideal. If not, it 

extends beyond the wall. The implications have been discussed in [8]. 
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At Aq , the left-hand side of (37) will be exactly the Pfirsch-Tasso W  defined by (11), and 

the right-hand side of (37) will give it in terms of customary functionals W . Therefore, 

definition (11) is convenient for the ideal non-rotating plasma, when it reduces to rhs of (37). 

If the plasma is non-ideal and Aq  (when we cannot substitute A  instead of q  in equation 

(34)), the functional (11) will contain an additional contribution depending on Aq .  

7. Conclusion  

Essential, previously unknown limitations of the Pfirsch-Tasso approach [1–4] are 

established. The contradictions between the models of the rotational stabilization [7, 8] and 

the theorems in [1–4] must be a consequence of the inherent restrictions of the method in [1–

4]. The proposed replacement of the Pfirsch-Tasso energy principle is free from the 

constraints imposed in [1–4] and can be used with any plasma model (not necessarily ideal, as 

in [1–4]) and with arbitrary time-dependence of perturbations. This allows applications for the 

cases of practical interest such as feedback stabilization of RWMs, analysis of the rotational 

stabilization and optimization of the ITER and JT-60SA scenarios. 
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