Magnetic Shear Effects on Plasma Transport and Turbulence at High Electron to Ion Temperature Ratio in DIII-D and JT-60U Plasmas

JT-60U

By M. Yoshida¹,

In Collaboration with

G. R. McKee², M. Murakami³, C. M. Collins⁴,

E. M. Davis⁵, J. R. Ferron⁴, A. M. Garofalo⁴,

B. A. Grierson⁶, C. T. Holcomb⁷, A. Marinoni⁵,

M. Nakata⁸, M. Ono^{2, 9}, C. C. Petty⁴, T. L. Rhodes¹⁰,

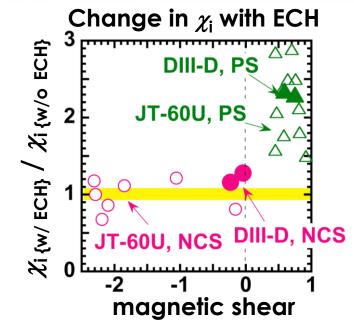
L. Schmitz¹⁰, W. M. Solomon⁶, C. Sung¹⁰, F. Turco¹¹

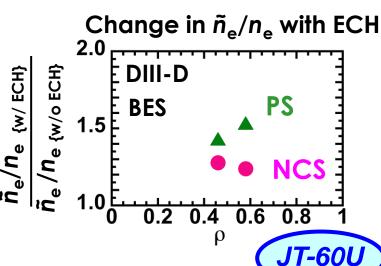
¹QST, ²UWM, ³ORNL, ⁴GA, ⁵MIT, ⁶PPPL, ⁷LLNL, ⁸NIFS, ⁹SOKENDAI, ¹⁰UCLA, ¹¹CU

Presented at 26th IAEA Fusion Energy Conference Kyoto, JAPAN,

October 17-22, 2016

Main Results: Negative Central Shear Plasma Reduces Transport and Turbulence at $T_e/T_i\sim 1$

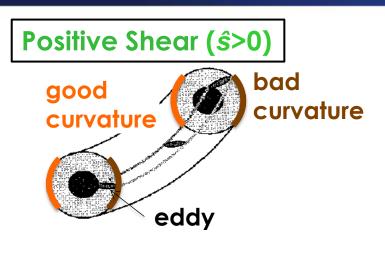

Conclusions

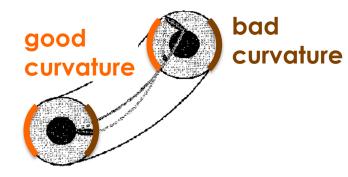

Consistency between DIII-D and JT-60U

– DIII-D and JT-60U show NCS plasma minimizes confinement degradation with increasing $T_{\rm e}/T_{\rm i}$ through ECH

Physics mechanisms in DIII-D

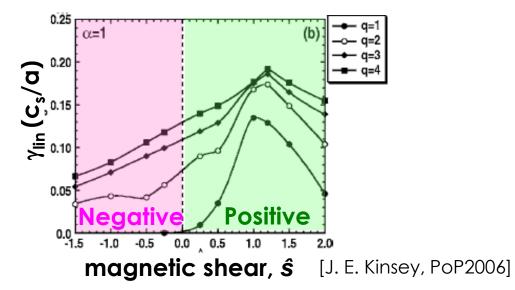
 DIII-D shows mechanism through smaller rise in low-k turbulent fluctuations and gyrokinetic simulations





 χ_i : Ion thermal diffusivity ITB: Internal transport barrier \tilde{n}_e : Density fluctuations

Background: Negative, Zero, Small Positive Shear Predicted to Have Transport Benefits

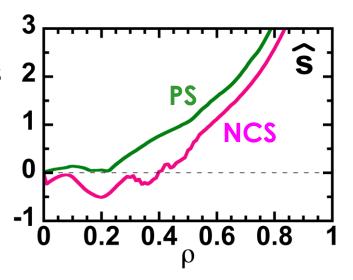


Negative shear (\hat{s} <0)

[T. M. Antonsen, PoP1996]

Turbulence linear growth rate dependence on \hat{s} and q

- Negative magnetic shear twists eddy to the good curvature direction
 - => stabilize turbulence
- Negative, Zero, Small positive shears have lower linear growth rates

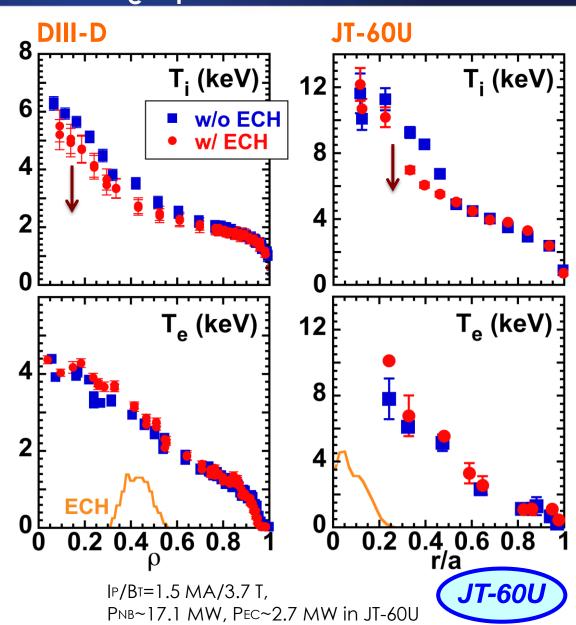


Investigated Transport Degradation with Electron Heating for Different Magnetic Shears

DIII-D experiment

- Positive Shear (PS) and Negative Central Shear (NCS) quasi-steady-state operations
 - -IP = 1.2 MA, BT = 1.9 T, q95 = 4.6
 - PNB ~ 6.4 MW, PECH ~ 3.2 MW at ρ ~0.3-0.5
 - ELMy H-mode, modest ITB, β N~2.2-2.7

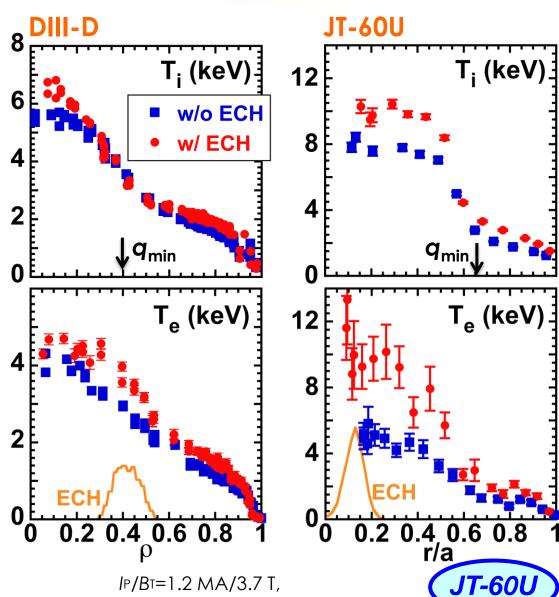
- NCS plasma had lower magnetic shear (ŝ) relative to PS plasma
 - Smaller magnetic shear can be beneficial


NCS, PS	Τ _e /Τ _i (ρ~0.3-0.6)
w/o ECH	~0.8
w/ ECH	~1.1

DIII-D and JT-60U Observed T_i Reduction in Positive Shear Plasmas as T_e/T_i Increased

- Core- T_i reduces in PS on both DIII-D and JT-60U as T_e/T_i increases
 - $-n_{\rm e}$ reduction is ~20% in DIII-D, ~10% in JT-60U

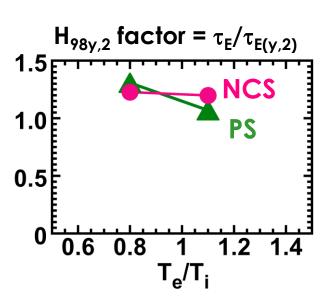
T _e /T _i	DIII-D	JT-60U
w/o ECH	0.8	0.7
w/ ECH	1.1	1.0

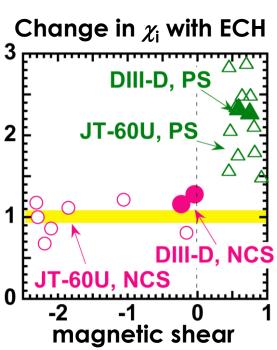


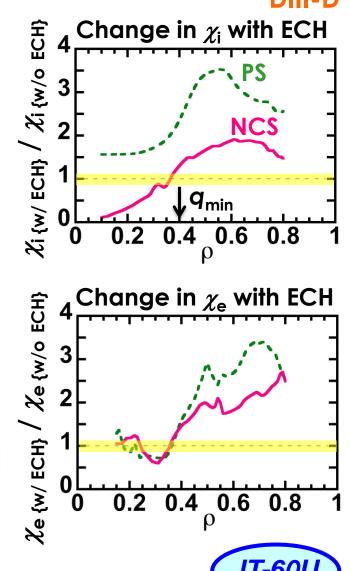
DIII-D and JT-60U Observed T_i Profile Maintained in Negative Central Shear Plasmas as T_e/T_i Increased

- T_i profile is maintained in NCS on both DIII-D and JT-60U as T_e/T_i increases
 - $-n_{\rm e}$ reduction is ~10% in DIII-D, no reduction in JT-60U

T _e /T _i	DIII-D	JT-60U
w/o ECH	0.8	0.6
w/ ECH	1.1	0.8

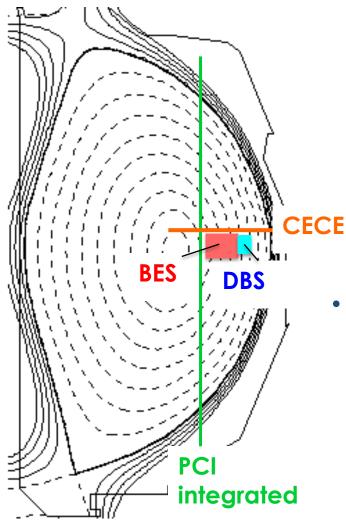





PNB≈9.3 MW, PEC≈2.9 MW in JT-60U

DIII-D and JT-60U Demonstrated NCS Minimizes Confinement Degradation as T_e/T_i Increased

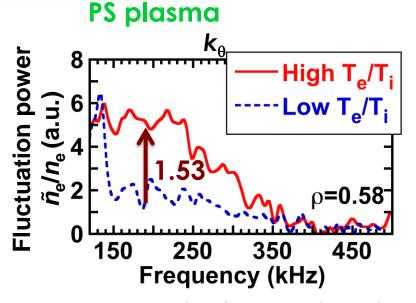
- Ion and electron thermal diffusivities significantly increase in PS plasma
- The confinement degradation is mitigated in NCS plasma across the profile
- Higher improved confinement factor is maintained in NCS plasma

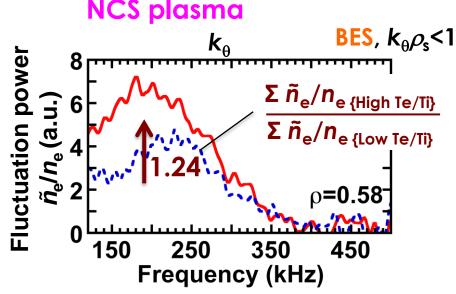


Magnetic Shear Effect on Transport was Assessed Using a Suite of Fluctuation Measurements

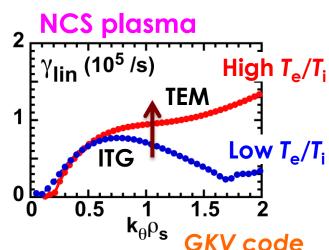
BES: low- $k \tilde{n}_e$

DBS: intermediate- $k \tilde{n}_e$


PCI: intermediate to high- $k \tilde{n}_e$

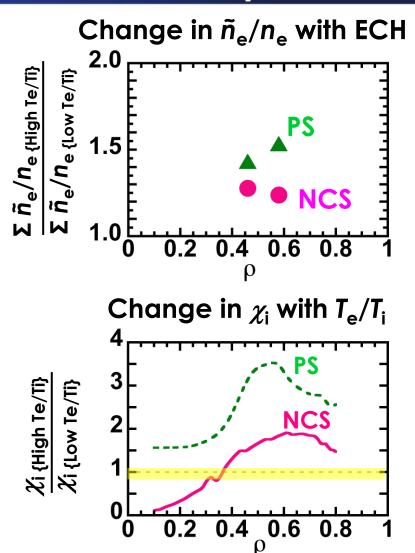

CECE: low-k \tilde{T}_{e}

- Show data outside of q_{min} mainly
 - Low signal levels inside of q_{min}
 - Transport differences across the profile



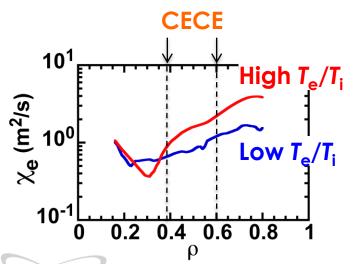
Low-k Density Fluctuations Increase Less in NCS Plasma with Increasing T_e/T_i

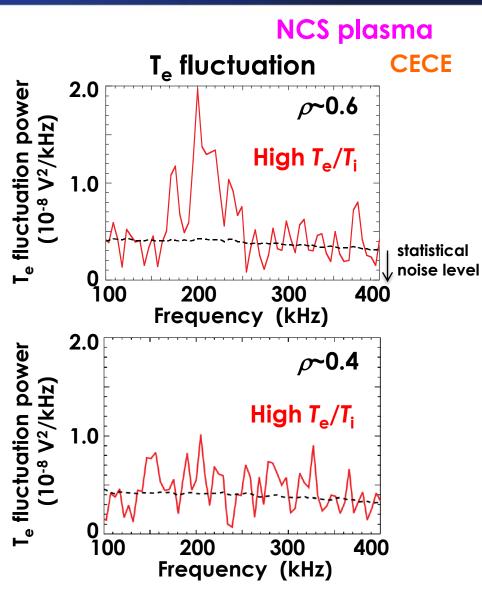
- Low-k density fluctuations increase with increasing T_e/T_i
 - Low-k fluctuations typically reflect ITG/TEM
 - GK predicts linear growth rates increase
- Increase in frequency-integrated fluctuations is ~24% in NCS plasma, smaller than PS plasma of ~53%



ITG: Ion Temperature Gradient mode TEM: Trapped Electron Mode

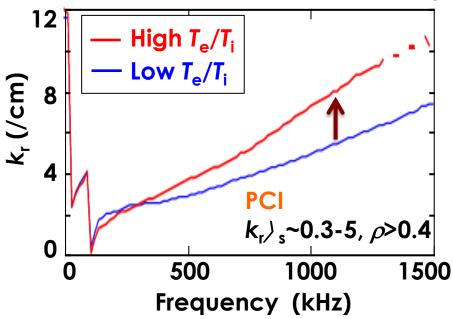
Modest Increase in Low-k Fluctuations Correlates with Modest Increase in Transport

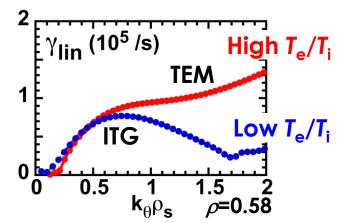

- Increase in broadband turbulent fluctuations with increasing $T_{\rm e}/T_{\rm i}$ in the NCS plasma was smaller than that in the PS plasma
 - Smaller low-k turbulence (ITG/TEM) accounts for higher confinement in NCS plasma at $T_e/T_i \sim 1$



$T_{\rm e}$ Fluctuations are Excited in the Outer Region with Increasing $T_{\rm e}/T_{\rm i}$

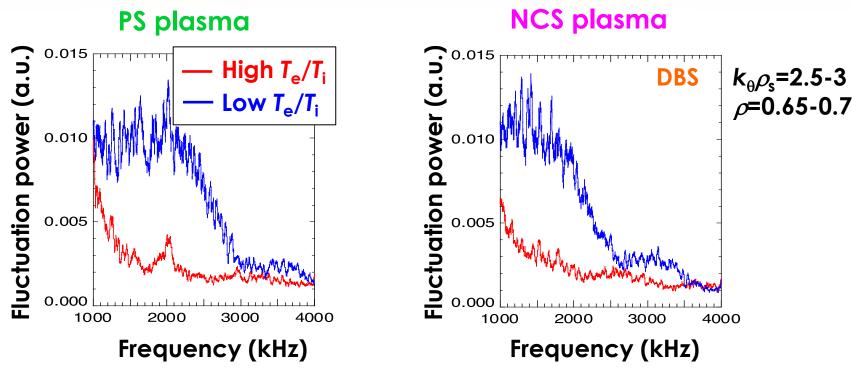
- T_e fluctuations in the outer region, accompanying n_e fluctuations around f=200 kHz
 - No clear broadband $T_{\rm e}$ fluctuations in the inner region
 - Consistent with thermal transport in outer region being enhanced by low-k fluctuations




Intermediate-k Density Fluctuations Altered with Increasing T_e/T_i

- Wavenumber at a given frequency increases with increasing T_e/T_i
 - Possible indication of change in TEM/ETG stability
- GK simulations predict switch of dominant mode from ITG to TEM

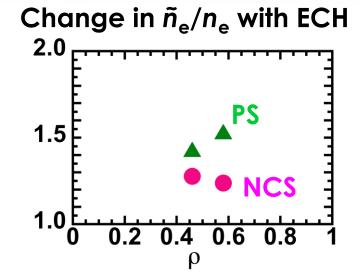
NCS plasma

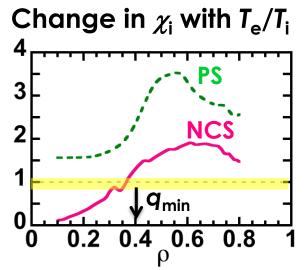


Intermediate-k Density Fluctuations Decrease in Outer Region with Increasing T_e/T_i

- Intermediate-k fluctuations decrease with T_e/T_i in the outer region
 - Consistent observation in PCI
- No significant difference between the PS and NCS plasmas
 - Multi-scale interactions may play a significant role in determining saturated turbulence amplitudes

Fluctuation Measurements Lead to Better Understanding of the Magnetic Shear Effect

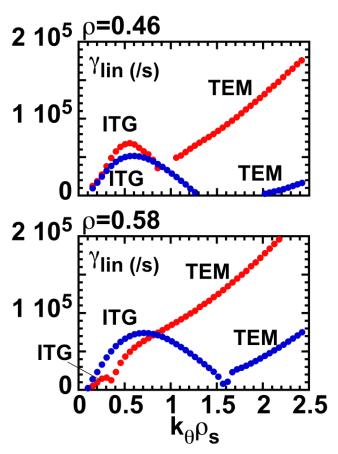

As T_e/T_i increases


	Transport	Fluctuations	Gyrokinetic simulations
NCS plasma	 Mitigated across the profile 	Smaller increase in low-k fluctuation	• Smaller increase in $\gamma_{\rm lin}$
		 Move to higher-k 	 Change in TEM/ETG stability
		 T_e fluctuations in outer region 	<i>,</i>
		 Intermediate-k decrease with ECH 	 Intermediate-k increase with ECH
PS plasma	 Increase significantly 	 Larger increase in low-k fluctuations 	• Larger increase in $\gamma_{\rm lin}$
		 Intermediate-k decrease with ECH 	 Intermediate-k increase with ECH

Summary: DIII-D and JT-60U Show NCS Minimizes Confinement Degradation Relative to PS at $T_e/T_i\sim 1$

- Benefit of NCS extends outside q_{min}
- DIII-D shows smaller rise in low-k turbulent fluctuations in NCS plasmas
- In NCS plasmas, increase in $T_{\rm e}/T_{\rm i}$ results in smaller change in GK linear growth rates and less increase in ion/electron thermal transport

Contribute to improve confinement with controlled magnetic shear in ITER and DEMO advanced scenarios



Increase in T_e/T_i results in smaller change in GK linear growth rates in NCS plasmas

Positive shear

Negative shear

