
1 TH/P3-17

Relation of plasma flow structures to
particle tracer orbits
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Abstract:

Plasma flow structures are analyzed using topological and geometric techniques on the
framework of resistive MHD. The structure of the flow is filamentary. The filaments are vor-
tices that are linked to the rational surfaces. The properties of these topological structures
are compared with those of tracer particles within a framework of the continuous random
walk (CTRW) approach. Vortices may cause some of the trapping of particles, while large
scale flows may carry them from vortex to vortex. The results indicate that most of the
trappings that are completed during the calculation correspond to tracers trapped on broken
filaments, including possible multiple trappings. The probability distribution function of
the trapping times is then a function of the filament length, and has a lognormal character,
like the distribution of filament lengths

1 Introduction

Turbulence induced transport is one of the outstanding physics problems in plasma
physics. In the turbulence induced transport issue, we proceed in three steps. First,
the identification of turbulent flow structures using topological and geometric techniques
and characterization of their statistical properties [1, 2]. Second, to relate these topologi-
cal structures to properties of tracer particles within a framework of the CTRW approach
[3]. Third, to construct a transport theory based on the CTRW approach and use the
information we obtained in characterizing the tracer particle properties. We are working
on the framework of the Resistive Magnetohydrodynamic (MHD) turbulence and we are
now at the second step in the process.

In the first step of our research, we used topological tools to characterize the flow
structures [1, 2]. All the information on the turbulent flow is contained in the electrostatic
potential Φ. We define a cubical space covering the cylinder. At a fixed time t, we define a
flow structure as the set of points with Φ greater than a given value of the potential. The
main finding of Ref. [1] was that the structure of the flow is filamentary. The filaments
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are vortices that are linked to the rational surfaces. Some of these filamentary vortices
close on themselves forming toroidal knots. These are the cycles and they are normally
located at the lowest rational surfaces. At the other low rational surfaces the filaments
are broken and we characterise them by their length.

The use of particle tracers has proven to be very helpful in trying to understand
turbulence-induced transport in magnetically confined plasmas. Particle tracers have been
used in numerical simulations to characterize diffusive transport and also non-diffusive
transport. Now, we try to use this approach in relating the tracer orbits to flow struc-
tures. When we look at tracer particle motion, we see that vortices may cause some of
the trapping of particles, while large scale flows may carry them from vortex to vortex.
This picture of the particle transport in plasma turbulence is consistent with the interpre-
tation of the transport from the perspective of the CTRW. Here we interpret the tracer
trajectories from this point of view.

2 Resistive pressure driven model

In this section, we describe the MHD model equations that we use in calculating the
turbulent flows generated by resistive pressure-gradient-driven turbulence that are ana-
lyzed in this paper. We study the pressure-gradient-driven turbulence in cylindrical and
toroidal geometry by means of a reduced set of resistive MHD equations [4] in the elec-
trostatic limit [5]. For most of the cases considered, the geometry is that of a periodic
cylinder, with minor radius a and length L = 2πR. In this section we describe the equa-
tions for the toroidal geometry. The changes when we go to the cylindrical geometry are
straightforward.

We use a coordinate system (ρ, θ, ζ), in which ρ is either the normalized minor radius
r for the cylindrical case, or a radius-like equilibrium flux surface label for the toroidal
case, θ is the poloidal angle and ζ is either the toroidal angle for the toroidal case, or
ζ = z/R, where z is the coordinate along the axis of the cylinder, for the cylindrical case.
The E ×B velocity is written in terms of the electrostatic potential:

V⊥ = −∇Φ× b

B
(1)

where Φ is the electrostatic potential, B is the magnetic field, and b is a unit vector in
the direction of the magnetic field.

The model consists of two equations, the perpendicular momentum equation for the
electrostatic potential evolution, and the equation of state for the pressure evolution. The
first one is

mini
dŨ

dt
= −B · ∇

(
R2

ηF 2
B · ∇Φ̃

)
+ 2

b× κ

B
· ∇p̃+miniµ̂∇2

⊥Ũ (2)

Here, d/dt = ∂/∂t+V⊥ ·∇ is the convective derivative, U = ζ ·∇×V⊥/B is the toroidal
component of the vorticity, η is the resistivity, κ = b ·∇b is the magnetic field curvature,
and µ̂ is the viscosity coefficient. The magnetic field is expressed as B = F∇ζ+∇ζ×∇ψ,
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where F = RBζ is the toroidal flux function and ψ is the poloidal flux. The derivative
along the magnetic field can be expressed as

B · ∇ =
F

R2

(
∂

∂ζ
− 1

q

∂

∂θ

)
(3)

where q is the safety factor, and R is the major radius. In cylindrical geometry, R and F
are constant.

The equation of state for the pressure evolution is

dp̃

dt
+ Γp∇ ·V⊥ = D⊥∇2

⊥p̃+D‖
R2

F
B · ∇

(
R2

F
B · ∇p̃

)
(4)

In equations (2) and (4), a tilde identifies perturbed quantities. For the nonlinear cal-
culations, the effect of the V‖ evolution in the dynamics of the resistive pressure-gradient-
driven turbulence is replaced by a parallel diffusivity in the pressure equation. Viscosity
and perpendicular transport are also included in the equations to provide the energy sink
needed to get steady-state turbulence.

The driving term of the resistive pressure driven instability is the pressure gradient in
the bad curvature region, that is, the second term on the right-hand side (rhs) of equation
(2). The first term on the rhs is the field line bending term, which is stabilising. The
resistivity weakens this term and allows the instability to grow.

In equation (2), the viscous term of the rhs for the (m = 0, n = 0) component is a
viscous drag −miniµŨ00 due to magnetic pumping. In equation (4), an energy source
term is added to the rhs for the (m = 0, n = 0) component in order to compensate for
dissipation and get a steady state.

The plasma considered here is a model of a configuration of the Large Helical Device
(LHD) [6]. Details of the configuration, numerical methods, and main parameters can be
found in Ref. [1].

3 Topological analysis of the flow structures

As we have already described in [1], [2], to study the topological structures of the turbulent
flow we work with the electrostatic potential Φ. All the information on the turbulence
is contained in the function Φ. For instance, turbulence vortices can be easily identified
by looking at the contours of the function Φ. We define a cubical space Nr × Nθ × Nζ

covering the cylinder. At a fixed time t, we define a flow structure as the set of points
such that Φ (r, θ, ζ, t) ≥ Φ0 max(Φ), for a suitable constant Φ0, with max(Φ) being the
maximum value Φ at time t. Therefore, Φ0 gives a fraction of the maximum value of Φ
and 0 ≤ Φ0 ≤ 1.

The main finding of Ref. [1] was that, when no average poloidal flow is present, the
structure of the flow is filamentary. The filaments are vortices that are linked to the
rational surfaces. Some of these filamentary vortices close on themselves forming toroidal
knots. These are the cycles and they are normally located at the lowest rational surfaces.
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At the other low rational surfaces the filaments are broken and we characterise them
by their length. Probably the most remarkable property that we have observed is the
lognormal character of the distribution of filament lengths [1]. When an averaged poloidal
flow is included in the model, there are also mini-transport barriers created by the shear
flow, which were discussed in detail in [2].

4 Relation between flow topology and tracer trans-

port

Having studied the properties of the flow structures, we can now study the statistical
properties of the radial displacements of tracer particles during a trapping period when
they are moving in the same turbulent flow fields that we have considered in the previous
section.

Using the velocity fields obtained from the resistive pressure-gradient-driven turbu-
lence calculations discussed in [1], we have studied the evolution of tracer particles. The
velocity field perpendicular to the magnetic field is given in terms of the electrostatic
potential, Φ(ρ, θ, ζ, t), by equation (1). Then the evolution of the tracers is given by

dr

dt
= −∇Φ× b

B
+ V0b, (5)

where r ≡ (ρ, θ, ζ) is the tracer position, and V0 is a constant velocity along the magnetic
field lines. In solving this equation we can take Φ at a fixed time and use the frozen
field or we can take Φ to be a function of time and then we have a dynamical evolution
of tracers. Here, in order to understand better the relation between flow structures and
tracer transport, we follow the first option.

When we look at tracer particle motion, we see that vortices may cause some of the
trapping of particles, while large scale flows may carry them from vortex to vortex. This
picture of the particle transport in plasma turbulence is consistent with the interpreta-
tion of the transport from the perspective of the CTRW. Here we interpret the tracer
trajectories from this point of view.

First, we decompose the tracer trajectories in radial flights, i.e. radial intervals in
between points where the radial velocity changes sign. A sequence of flights around
the same radial point corresponds to a trapping; the rest of flights are jumps either
between trappings or out of the plasma. These jumps also can have one or many flights.
Two examples of a tracer trajectory are shown in figure 1. The tracer on the left panel
is trapped during the full length of the calculation, and six different trappings can be
identified. The tracer on the right panel is trapped during some time, and then jumps out
of the plasma. Precise criteria for trappings are important and far from trivial. Details
on the numerical identification of trappings are given in Ref. [7].

For the analysis of the flow structures, we consider 2-D subsets corresponding to ζ =
constant. In each of these toroidal cuts, we identify the connected components following
the same approach as we did for the radial slices in [1] and we determine the radial extend
of each of them. These connected components are the topological flow structures that
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FIG. 1: Examples of tracer trajectories. Left: tracer is trapped during the full length of the
calculation. Right: tracer leaves the plasma.

we discuss here. Note that they can be identified with one or more flow vortices. The
trapped tracer trajectories are linked to the flow structure not to the individual vortices.

FIG. 2: Projection of flow structures. Points
for which Φ ≥ 0.1 max(Φ) are in red and points
for which Φ ≤ −0.1 max(Φ) are in green. The
trajectory of a tracer is shown in blue.

To visualize the topological flow struc-
tures and to compare them with the parti-
cle tracer orbits, we do first a transforma-
tion of the poloidal angle θ to

θ → θ + ζ/q(r) (6)

With this transformation, we unscrew the
helical structures in such a way that the
magnetic field lines became parallel at the
axis of the cylinder. Then we can project
the structures on the ζ = 0 plane. We
can represent this projection in the plane
(r, θ); this will give spots that show the
maximum width of the structures on the
whole ζ range.

Fig. 2 shows the projected structures
in the (r, θ)-plane for Φ0 = 0.1. Also it is
shown (in blue) the trajectory of a tracer.
The tracer is most of the time trapped at
different structures and occasionally jumps
between them.

Trappings and flights are closely related to the properties of the plasma flow. Radial
excursions are relatively regular during the trapping period but they can vary a great
deal from trapping to trapping. Previously, we have found a clear correlation between
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the radial extend of the flow structures and the radial excursions of the tracer particles
during their trapping phase [7]. The character of trapping may change with the magnetic
field geometry and by the presence of an averaged flow.

In this paper, we focus on the relation between the trapping times and the flow struc-
tures. We have studied the evolution of tracers for three different values of V0. The initial
tracer positions are randomly distributed in the cylinder, and we follow the trajectory of
105 tracers till the end of the calculation and accumulate the data. This data is analysed
to identify the portion of the trajectories that the tracers remain trapped.

For each case, we have two sets of data on the trapping. There is one set for the
trappings that do not reach the end of the calculation, that is, a set of data in which the
trapping phase is completed. There is another set in which the tracers were still trapped
the last step. In this last set we have tracers that are trapped practically during the full
length of the calculation.
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FIG. 3: PDFs of the the trapping times for
four values of the parallel velocity.

10-5

10-4

10-3

10-2

10-1

100

101

10-2 10-1 100 101 102 103

V0 = 20
V0 = 50
V0 = 200

Pr
ob

ab
ili

ty

V0*Trapping time

FIG. 4: PDF of the trapping times multiplied
by V0 for three values of the parallel velocity.

We have calculated the probability distribution function (PDF) of the trapping times
for four values of the parallel velocity of the tracers V0. The results are shown in figure 3.
If we re-scale the trapping times by multiplying by V0, we have practically the same
dependence for the tail of the PDF, as can be seen in figure 4. This indicates that most of
the trappings that are completed during the calculation correspond to tracers trapped on
broken filaments, including possible multiple trappings (see figure 2). The PDF is then a
function of the filament length (product of V0 by the trapping time). The sharp increase
at the end of the distribution corresponds to the tracers which trapping period has not
finished by the end of the calculation.

The distribution of trapping times has a lognormal character, like the distribution of
filament lengths. This is shown in figure 5, where we plot the PDF of the trapping times
for V0 = 500 together with a lognormal fit.
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FIG. 5: PDF of trapped times for V0 =
500 together with a lognormal fit.

We have developed a model in the line of
the CTRW approach for simulating the trapping
of tracers.Walks are defined along resonant field
lines. For each walk, we take a step δr, which is
the radial flight of the tracer when trapped.

For each tracer, the initial radial and poloidal
locations are chosen randomly. For the radial
step size, δr, we use the distribution of the radial
width of the flow structures. For the filaments,
the main parameter is the length of the filament
along the tracer moves. In this case, we use the
lognormal distribution of filament lengths.

The model has two parameters: 1) p0, the
probability that a tracer on a filament jumps to
another, and 2) p1, the probability of a tracer to
detrap in a given step.

By choosing suitable parameters p0 and p1
we have a reasonable description of the distribu-
tion of trapping times and number of flights per
trapping.
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FIG. 6: PDF of trapped times for V0 =
200 (frozen and evolving field).

We have also considered the evolution of trac-
ers in the evolving turbulence, during the same
steady state period as we studied the flow struc-
tures and using the same turbulent flow field. In
general, we have a smoother PDF for the evolv-
ing turbulence because of the varying conditions
of the flow on one hand and also during the evo-
lution tracers remain trapped for shorter times
and the statistics are better than the case of the
frozen turbulence. An example of the PDF is
shown in figure 6, where it is compared with
the PDF for the frozen field case. As shown in
Ref. [8], the distribution of trapping times of the
tracers is related with the distribution of life-
times of the cycles in the flow structure.

All the results shown here correspond to tur-
bulence models which do not include an averaged
poloidal flow. As we discussed in Ref. [7], when
an averaged poloidal flow is self-consistently in-
cluded in the calculation the trappings are of two
types: by vortex structures and by barriers. To distinguish between the two types of trap-
pings we measure the pitch qp of the averaged tracer trajectory in the (θ, ζ) plane during
the trapping. For the tracers trapped in flow structures, this pitch should be equal to q(r),
where q is the safety factor at the corresponding radial position. There is an increase in
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the tracer trapping due to tracers trapped in the transport barriers created by the shear
in the mean flow.

5 Summary

We have studied the trapping of tracers in a turbulent field in cylindrical geometry. With-
out an averaged flow, tracers are trapped by vortex-type flow structures and the radial
excursions during the trapping correlate well with the widths of these vortex structures.

The trapping of tracers, which do not remain trapped at the end of the calculation,
seems to be due to trapping on finite size filaments including multiple possible trappings.
The cycles seem to play a role for the tracers that remain trapped very large times, larger
than the calculation time.

In the case of tracers in evolving turbulence, the distribution of trapping times of the
tracers is related with the distribution of lifetimes of the cycles in the flow structure.
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