# The Role of Drifts and Radiating Species in Detached Divertor Operation at DIII-D

#### A.G. McLean<sup>1</sup>

with S.L. Allen<sup>1</sup>, T. Abrams<sup>3</sup>, J.A. Boedo<sup>5</sup>, I. Bykov<sup>5</sup>, A. Briesemeister<sup>2</sup>, J. Canik<sup>2</sup>, R. Ding<sup>6</sup>, D. Elder<sup>4</sup>, D. Eldon<sup>7</sup>, M. Fenstermacher<sup>1</sup>, M. Groth<sup>8</sup>, H.Y. Guo<sup>3</sup>, J. Guterl<sup>3</sup>, D.N. Hill<sup>3</sup>, A. Jarvinen<sup>1</sup>, E. Kolemen<sup>7</sup>, C. Lasnier<sup>1</sup>, A.W. Leonard<sup>3</sup>, M. Makowski<sup>1</sup>, B. Meyer<sup>1</sup>, A.L. Moser<sup>3</sup>, T.H. Osborne<sup>3</sup>, T.W. Petrie<sup>3</sup>, G.D. Porter<sup>1</sup>, T. Rognlien<sup>1</sup>, D. Rudakov<sup>5</sup>, C. Samuell<sup>1</sup>, C. Sang<sup>6</sup>, P.C. Stangeby<sup>4</sup>, D. Thomas<sup>3</sup>, E. Unterberg<sup>2</sup>, H. Wang<sup>2</sup>, J. Watkins<sup>9</sup>

<sup>1</sup>LLNL<sup>6</sup>ASIPP<sup>2</sup>ORNL<sup>7</sup>PPPL<sup>3</sup>GA<sup>8</sup>Aalto University<sup>4</sup>University of Toronto<sup>9</sup>SNL<sup>5</sup>UCSD<sup>5</sup>UCSD

Presented at the 26<sup>th</sup> International Atomic Energy Agency Fusion Energy Conference Kyoto, Japan

October 17–22, 2016 <u>Divertor & SOL Physics 1, 19 Oct. 10:45-11:05 AM</u>



McLean/IAEA FEC/October 2016

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DEAC52-07NA27344, and under Contracts DE-FC02-04RF54498, DEFG02-07ER54917, DE-FG02-05ER54809. LLNL-PRES-704559



# Prediction and Control of Target Heat Load is Critical for Future Devices

#### • Inner/outer target asymmetries

- Roles of **E**×**B** drift components
- Result: Qualitative agreement between experiment and 2D fluid modeling with drifts

#### Detachment onset

- 2D measurements with Divertor Thomson scattering (DTS)
- Result: Rapid transition to a cold outer target with ion B×∇B↓

#### Radiated power

- Universal shortfall when modeling compared to experiment, multiple codes and wall materials
- Result: No shortfall in He plasma using divertor conditions as input





# Reversing the Toroidal B Field is Carried Out to Probe the Impact of E×B Drifts in the Divertor

- Toroidal field convention lower single null (LSN):
  - Ion  $B \times \nabla B$  direction **down** (into the divertor) = '**Forward**'





# Reversing the Toroidal B Field is Carried Out to Probe the Impact of E×B Drifts in the Divertor

#### Toroidal field convention – lower single null (LSN):

- Ion  $B \times \nabla B$  direction **down** (into the divertor) = '**Forward**'
- Ion  $B \times \nabla B$  direction **up** (out of the divertor) = '**Reverse**'
- In fwd B<sub>T</sub>, less power to enter H-mode, generally higher confinement for equal injected power
  - 'Favorable' direction





# E×B Drifts Can Be Separated Into Two Distinct Components

- Poloidal E<sub>r</sub>×B leads to flow of particles from
  - outer to inner divertor in the PFR with ion  $B \times \nabla B \downarrow$





# E×B Drifts Can Be Separated Into Two Distinct Components

- Poloidal E<sub>r</sub>×B leads to flow of particles from
  - outer to inner divertor in the PFR with ion  $B \times \nabla B \downarrow$
  - inner to outer divertor in the PFR with ion B×∇B ↑





# E×B Drifts Can Be Separated Into Two Distinct Components

#### • Poloidal E<sub>r</sub>×B leads to flow of particles from

- outer to inner divertor in the PFR with ion  $B \times \nabla B \downarrow$
- inner to outer divertor in the PFR with ion  $B \times \nabla B \uparrow$

### • Radial $E_{\theta} \times B$ carries particles

- into/out of the PFR from the outboard side with ion  $B \times \nabla B \downarrow$ 
  - Leads to inward shifts in radial profiles
- into/out of the PFR from the inboard side with ion  $B \times \nabla B \uparrow$ 
  - Leads to outward shifts in radial profiles





# Well Characterized Plasmas are Used to Reveal the Impacts of Drifts

- Increasing steady density step in successive discharges
- Swept X-point across 1D diagnostic arrays to extend to 2D
- Upgraded diagnostics including 2D remapped DTS
- Inter-ELM data analyzed





# Well Characterized Plasmas With Good Performance are Used to Reveal the Impacts of Drifts

- Increasing steady density step in successive discharges
- Swept X-point across 1D diagnostic arrays to extend to 2D
- Upgraded diagnostics including 2D remapped DTS
- Inter-ELM data analyzed
- H-mode with  $H_{98} \ge 1.0$  maintained at all  $n/n_{GW}$







# Target Temperature Asymmetry With $B \times \nabla B \downarrow$ is Reduced For $B \times \nabla B \uparrow$ and Decreases with Increasing Density

 Target heat flux higher at outer target with B×∇B↓





A.G. McLean, 26th IAEA FEC Kyoto , Japan, October 2016

# Target Temperature Asymmetry With $B \times \nabla B \downarrow$ is Reduced For $B \times \nabla B \uparrow$ and Decreases with Increasing Density

- Target heat flux higher at outer target with  $B{\times}\nabla B\downarrow$
- Target T<sub>e</sub> higher at the OSP with  $B \times \nabla B \downarrow$







A.G. McLean, 26th IAEA FEC Kyoto , Japan, October 2016

### Target Temperature Asymmetry With $B \times \nabla B \downarrow$ is Reduced For $B \times \nabla B \uparrow$ and Decreases with Increasing Density

- Target heat flux higher at outer target with  $\mathbf{B} \times \nabla \mathbf{B} \perp$
- Target T<sub>e</sub> higher at the OSP with  $B \times \nabla B \downarrow$
- Integrated radiation biased to the inner divertor with  $B \times \nabla B \downarrow$

 $q_{L}(MW/m^{2})$ 

0.98

0.99

0.98

Targets show largest asymmetry at lowest density with  $B \times \nabla B \downarrow$ 

Inner target

1

Ψ,

B×∇B↓

0.99



1.01

**Outer target** 

1

Ψ,

1

0.8

0.6

0.4

0.2

0 1.02

1.01

<sup>1</sup>μ(MW/m<sup>2</sup>)

# Target Temperature Asymmetry With $B \times \nabla B \downarrow$ is Reduced For $B \times \nabla B \uparrow$ and Decreases with Increasing Density

- Target heat flux higher at outer target with  $B{\times}\nabla B\downarrow$ 
  - − Nearly symmetric with  $B \times \nabla B \uparrow$
- Target T<sub>e</sub> higher at the OSP with  $B \times \nabla B \downarrow$ 
  - − Symmetric with  $B \times \nabla B \uparrow$

Inner target

Ψ,

B×∇B↓

0.99

 Integrated radiation biased to the inner divertor with B×∇B↓

 $q_{I}(MW/m^2)$ 

0.98

0.99

0.98

- − In contrast, mirrored with  $B \times \nabla B \uparrow$
- Targets show largest asymmetry at lowest density with B×∇B↓



B×∇B 1

**Outer target** 

1

Ψ<sub>n</sub>

1

0.8

0.6

0.4

0.2

1.02

B×∇B 1

1.01

q<sub>L</sub>(MW/m<sup>2</sup>)

## At Low Densities, Drifts are Large and Drive Asymmetries Throughout the Divertor Region

- Divertor Thomson Scattering (DTS) unique to DIII-D, capable of measurements of 0.5 < T<sub>e</sub> < 5 keV, 1x10<sup>18</sup> < n<sub>e</sub> < 1x10<sup>21</sup>/m<sup>3</sup>
  - 4 MW H-mode, inter-ELM analysis only
- Asymmetries in plasma parameters evident with B×∇B ↓, abated asymmetry in B×∇B ↑
- Extraordinarily high density throughout inboard SOL region with B×∇B↓
  - Confirms measurements made via Stark Broadening at ASDEX (S. Potzel PSI2014)
  - Radial density gradient reversed for  $B \times \nabla B \uparrow$
- Pressure higher at the target towards which the poloidal drift in the PFR is directed
  - As predicted based on particle conservation and poloidal momentum balance (A. Chankin PPCF2015)





### At Medium Densities, Drifts Weaken But Their Impact Remains Observable Upstream of the Targets

- Divertor Thomson Scattering (DTS) unique to DIII-D, capable of measurements of 0.5 < T<sub>e</sub> < 5 keV, 1x10<sup>18</sup> < n<sub>e</sub> < 1x10<sup>21</sup>/m<sup>3</sup>
  - 4 MW H-mode, inter-ELM analysis only
- Asymmetries in plasma parameters still evident with B×∇B ↓, abated asymmetry in B×∇B ↑
- Transition to detachment at higher density shown to minimize the role of drifts at the targets, but not upstream in the legs





## At the Highest Densities, Impact of Drifts and Asymmetries are Minimal at the Targets

- Divertor Thomson Scattering (DTS) unique to DIII-D, capable of measurements of 0.5 < T<sub>e</sub> < 5 keV, 1x10<sup>18</sup> < n<sub>e</sub> < 1x10<sup>21</sup>/m<sup>3</sup>
  - 4 MW H-mode, inter-ELM analysis only
- Plasma parameters symmetrically cold/dense at the targets for both  $B\times \nabla B \downarrow$  and  $B\times \nabla B \uparrow$
- Sudden transition to cold/detached divertor throughout outer leg region for B×∇B↓
  - Smooth transition to detachment at both legs with B×∇B ↑
- Results confirm earlier theory and modeling that show ExB creates a particle sink in the outer SOL-divertor and a particle source in the inner SOL-divertor for B×∇B↓
  - A. Chankin, Plasma Phys. Cont. Fusion 57 (2015) 095002





### ExB Flow Velocities and Fluxes Calculated Directly From T<sub>e</sub> and n<sub>e</sub> Measurements Confirm Strong Role of Both Radial and Poloidal Drifts

- 2D ExB drift velocities are calculated from 2D DTS measurements using Ohm's Law for the parallel electric field using OEDGE for gridding and fitting data
  - Can be done for any plasma (e.g., high power discharges)

17

- Spatial derivatives of n<sub>e</sub> and T<sub>e</sub> used to calculate E, integrated along and across flux tubes to find v<sub>plasma</sub>, multiplied by local n for particle fluxes
- Integrated poloidal and radial fluxes are found to be comparable in attached conditions, as suggested by theory and modeling



### ExB Flow Velocities and Fluxes Calculated Directly From T<sub>e</sub> and n<sub>e</sub> Measurements Confirm Strong Role of Both Radial and Poloidal Drifts

- 2D ExB drift velocities are calculated from 2D DTS measurements using Ohm's Law for the parallel electric field using OEDGE for gridding and fitting data
  - Can be done for any plasma (e.g., high power discharges)
- Spatial derivatives of n<sub>e</sub> and T<sub>e</sub> used to calculate E, integrated along and across flux tubes to find v<sub>plasma</sub>, multiplied by local n for particle fluxes
- Integrated poloidal and radial fluxes are found to be comparable in attached conditions, as suggested by theory and modeling and fluxes match the expected drift pattern



# Modeling of DIII-D H-mode With $B \times \nabla B \downarrow$ and $\uparrow$ Using UEDGE Confirms Relative Roles of Poloidal and Radial E×B on Asymmetries

### • UEDGE fluid model characteristics

- H-mode gradients; D=0.15 m²/s,  $\chi_{e,i}$ =0.4 m²/s
- Full drift physics model included
- General characteristics in good agreement
  - In/out radial shift in T<sub>e</sub>, opposite direction for n<sub>e</sub>
  - Partially attached ISP / well attached OSP
  - Target density peak inboard of the ISP
- Confirms strong role of E<sub>θ</sub>×B and E<sub>r</sub>×B drifts in asymmetry formation throughout the divertor region





T. Rognlien, PSI2016 A. Järvinen, EPS2016

# Modeling of DIII-D H-mode With $B \times \nabla B \downarrow$ and $\uparrow$ Using UEDGE Confirms Relative Roles of Poloidal and Radial E×B on Asymmetries

 H-mode gradients with drifts with B×∇B ↑ for the first time with UEDGE

 $B \times \nabla B \uparrow$ 

- Again, general characteristics in good agreement
  - Improved symmetry in both T<sub>e</sub> and n<sub>e</sub>
  - Stronger density peak outboard of the OSP
  - Displacement of peak conditions from target separatrix relative to B×∇B ↑ case confirms role of drifts in target asymmetries
- Underscore the importance of including E×B effects in interpretive/ predictive boundary modeling





T. Rognlien, PSI2016 A. Järvinen, EPS2016

### Matching Divertor Conditions and Eliminating Uncertain Molecular Physics Resolves Radiation "Shortfall"

- Matching upstream conditions in fluid modeling leads to a shortfall in divertor radiated power relative to experiment
- Common result for DIII-D, JET, ASDEX
  - Multiple Braginskii fluid codes and wall materials
  - M. Groth, JNM2011 (UEDGE/DIII-D)
  - A. Järvinen, PPCF2016 (EDGE-2D+EIRENE/JET)
  - F. Reimold, PSI2016 (SOLPS/ASDEX)
  - J. Canik, PSI2016 (SOLPS/DIII-D)
- For DIII-D, both SOLPS and UEDGE modeling of D+C plasmas have shown this shortfall

– L- and H-mode, all values of  $n/n_{GW}$ 





A.G. McLean, 26<sup>th</sup> IAEA FEC Kyoto , Japan, October 2016

J. Canik, PSI2016

J. Canik, APS2016

### Matching Divertor Conditions and Eliminating Uncertain **Molecular Physics Resolves Radiation "Shortfall"**

0.4

0.2

0.0

Radiated power (MW)

Upstream

Match

Shortfall

Match Divertor

SOLPS

(D plasma)

EXPT

However, the shortfall can be reduced using divertor plasma parameters from DTS (2D T<sub>e</sub> and n<sub>e</sub>) as input

Allow upstream conditions to vary

- Suggests improvement needed in parallel physics model
  - Possible ion contribution to pressure/ momentum



## Matching Divertor Conditions and Eliminating Uncertain Molecular Physics Resolves Radiation "Shortfall"

- However, the shortfall can be reduced using divertor plasma parameters from DTS (2D T<sub>e</sub> and n<sub>e</sub>) as input
  - Allow upstream conditions to vary
- Suggests improvement needed in parallel physics model
  - Possible ion contribution to pressure/ momentum
- Additionally, the P<sub>rad</sub> shortfall may be eliminated combining this technique with helium plasmas
  - Removes uncertainty in hydrocarbon atomic/molecular physics
  - Consistent with result of M. Wischmeier, JNM2003 (B2.5-EIRENE/JET He plasma)





J. Canik, APS2016

# Conclusions: Experiments With $B \times \nabla B \downarrow$ and $\uparrow$ Provide Direct Evidence that Poloidal and Radial E×B Drifts Strongly Contribute to Target Asymmetries

- Measured 2D divertor plasma parameters are directly interpreted to deduce poloidal and radial components of electric field, potential, and particle fluxes
- State-of-the-art fluid modeling in H-mode with a full drift model confirms major plasma characteristics
  - Implications for heat flux control near a partial detachment operating point
- A persistent/universal shortfall of radiation found with 2D edge fluid modeling of multiple machines and wall materials is improved using divertor conditions as input
  - Modeling of He discharges suggests a combination of molecular physics and parallel transport are the cause
- Comprehensive studies with extensive diagnosis provide valuable physics insight
  - Demonstrates value of systematic parameter scans, necessity of physics
    inclusion in modeling





# Future Plans in Divertor Science on DIII-D

### Addition of divertor EUV/VUV SPRED for fuel and impurity concentrations

- Direct measurement of radiative losses, and component concentrations
- View coincident with DTS/spectroscopy

### • Divertor Thomson upgrades in progress

- Redirection of beam and collection optics to measure in high triangularity
- Measurement frequency doubled to 100 Hz (2<sup>nd</sup> laser)

### • Flow interferometry in regular use

- CII/CIII/Hell parallel flow field
- Improved calibration method implemented
- Planned upgrade for divertor bolometry
  - Addition of two high resolution fans in the lower divertor





# Future Plans in Divertor Science on DIII-D

### Addition of divertor EUV/VUV SPRED for fuel and impurity concentrations

- Direct measurement of radiative losses, and component concentrations
- View coincident with DTS/spectroscopy

### • Divertor Thomson upgrades in progress

- Redirection of beam and collection optics to measure in high triangularity
- Measurement frequency doubled to 100 Hz (2<sup>nd</sup> laser)

### • Flow interferometry in regular use

- CII/CIII/Hell parallel flow field
- Improved calibration method implemented
- Planned upgrade for divertor bolometry
  - Addition of two high resolution fans in the lower divertor





### **Backup slides**



# DIII-D includes extensive lower divertor/boundary diagnostic coverage valuable for study of drift impact in attached and detached plasmas



- Improved 2D profiles of T<sub>e</sub>, n<sub>e</sub>, e-pressure from DTS
- Upstream profiles from core Thomson scattering, reciprocating (RCP), charge-exchange (CER), reflectometry
- Target particle flux from Langmuir probe array (LP) and visible cameras (DiMES TV)
- Heat flux from IR TV (floor view, and periscope IRTV with full poloidal view)
- Line emission profiles from PMT and visible divertor spectrometer arrays, tangential-viewing cameras (1D and 2D)
- Toroidal impurity flows measured with interferometric cameras and tangential-viewing spectroscopy (1D and 2D)
- **Bolometer total radiation**
- Neutral pressure measured with ASDEX ionization gauges in divertor and outer midplane



### Strike Point Sweeping With Constant Divertor Conditions is Used to Extend 1D Measurements To 2D

- DIII-D employs an open lower divertor, graphite first-wall tiles, and frequent conditioning
- Measurement of continuity in divertor conditions verified with mapped data from
  - Langmuir probes
  - Multichannel spectroscopy
  - Heat flux profiles
- Each step in the sweep used to reconstruct a 2D DTS profile





### Langmuir Probes Demonstrate Shifts of j<sub>sat</sub> and Plasma Potential as the B Field Reverses which Reduce as Density Increases

- $J_{sat}$  profiles shifted inward in forward  $B_T$  relative to reverse consistent with radial E×B drift direction
- Smallest shift when poloidal temperature gradient is the least ( $E_{\theta} \propto dT/ds$ )
  - Simultaneous drop in plasma potential measured by the probes



#### Low density, n/n<sub>GW</sub>=0.6

NATIONAL FUSION FACILI

30

# Strong ballooning-like parallel transport from the outboard midplane drives parallel flow around the SOL

- Dominant cause of Mach~0.5 flow observed in plasma crown and HFS of C-Mod, JET, JT60-U and DIII-D
  - Smick, Nucl. Fusion 53 (2013) 023001.
  - Stangeby, J. Nucl. Mater. 415 (2011) S278.
- $\nabla \cdot \mathbf{V}_{\theta} + \nabla \cdot \mathbf{V}_{r} = \mathbf{0}$
- Stagnation point near outboard midplane
- Flow direction not dependent on B





### Together, transport (parallel) and drift-driven (perpendicular) forces lead to a complex picture of particle/power flows around a tokamak

- Net poloidal rotation in the SOL gives rise to ion parallel Pfirsch-Schlüter flows sustained by up-down pressure asymmetry
- Ionization-driven flows at the divertor targets can additionally have large scale impact
  - Flow reversal and coupling between divertor legs due to neutral leakage
- Flows caused by ∇B and centrifugal drifts, related to gradients of p/eBR, are relatively small
  - Pressure near equilibrium
  - Scale as 1/major radius compared to ExB which scales as 1/plasma scale length (L<sub>p</sub><<R)</li>
  - Small variations in geometric volume factor R

lon  $B \times \nabla B$ 'Normal'  $B_{T}$ 

Target recycling/pumping source/sinks Detachment front sink



### Peak plasma conditions at the outer target, forward vs reverse B<sub>T</sub>

•





- T<sub>e</sub> cliff in fwdB<sub>τ</sub> associated with ~10X drop in p<sub>e</sub> (n/nGW=0.72-0.78)
  - Largest fraction of drop in  $p_e$  occurs when  $T_e$  drops from 4 to 1 eV, not ~20 to 4 eV
- OSP detached in revB<sub>T</sub> does not have unusual drop in p<sub>e</sub>
- Symmetry in revB<sub>T</sub> ISP/OSP peak values apparent compared to fwdB<sub>T</sub>

# Raw Thomson data shows the influence of fluctuations captured by the system

**Divertor system** 



#### Core/pedestal system



#### Upstream/pedestal profiles demonstrate minor but systematic differences between fwd/rev Bt through the transition to detachment



35

# Recent modeling of JET strongly suggest $E_{\theta}xB_{\phi}$ radial drift component is dominant prior to detachment onset

- Chankin/Groth JET EDGE2D results
- 2D edge fluid code of L-mode discharges with drifts included predict influence of Bt reversal on divertor and target asymmetries
- Analysis of convective fluxes caused by poloidal and radial ExB drifts
- Crucial role of radial ExB drift in influencing asymmetries
- Opposite to the result expected if poloidal ExB drift was dominant in the divertor





### DTS: Forward B<sub>T</sub> (B x gradB down)



- 10 step series, n/n<sub>GW</sub>=0.48 to 0.82
- Both targets attached to ~0.62
- Inner target detaches smoothly from ~0.62 to 0.75
- Outer target detaches suddenly from 0.75 to 0.79 (5% increase in n<sub>e,bar</sub>) "Te cliff"
- Significant radial  $n_e$  gradient; highest at inboard from lowest  $n_e$  to  $n/n_{GW}$ ~0.75
- Jump in p<sub>e</sub> throughout divertor at high recycling onset (0.57 to 0.62), slow decrease at inner target, jump down at outer target at point of detachment



## DTS: Reverse B<sub>T</sub> (B x gradB up)



- 10 step series,  $n/n_{GW}$ =0.51 to 0.72 (compared to 0.48 to 0.82 in fwdB<sub>T</sub>)
  - Higher density attempts caused plasma to drop out of H-mode in  $revB_T$
- Both targets attached to ~0.61 (compared to ~0.62 in fwdB<sub>T</sub>)
- Both targets detach together starting near ~0.65-0.67 (~same as inner target in fwdB<sub>T</sub> case)
- Smaller ne gradient, but upwards at higher major radius (i.e., wider low field side SOL)
- p<sub>e</sub> climbs then drops slowly at both targets



# DTS-measured parameters vs. $L_{||}$ demonstrate sudden transition to detachment along the entire OSP leg for fwd $B_T$



39

### **Bolometry**

#### **DIII-D Bolometry**

LSN 5.5 MW H-mode density scan,  $B_{\tau}$ =±1.8T,  $I_{p}$ =0.9 MA Data averaged from 3900-4100 ms in each shot

Forward  $\mathbf{B}_{\tau}$  ( $\mathbf{B} \times \nabla \mathbf{B} \downarrow$ ) 160997 161002 161003 161004 161005 161006 161007 161009 161011 161008 n\_=6.3E13/cm3 n\_=6.6E13/cm<sup>3</sup> n\_=6.7E13/cm<sup>3</sup> n\_=4.1E13/cm3 n\_=4.8E13/cm<sup>3</sup> n\_=5.2E13/cm3 n.=5.4E13/cm<sup>3</sup> n\_=5.7E13/cm3 n\_=6.0E13/cm<sup>3</sup> n\_=6.8E13/cm<sup>3</sup> n/n<sub>gw</sub>=0.48 n/n<sub>gw</sub>=0.57 n/n<sub>gw</sub>=0.62  $n/n_{GW} = 0.64$ n/n<sub>gw</sub>=0.67 n/n<sub>gw</sub>=0.71 n/n<sub>gw</sub>=0.75 n/n<sub>gw</sub>=0.79  $n/n_{GW} = 0.80$ n/n<sub>gw</sub>=0.82 0.000 i.u 1.00 1.00 1.00 1.00 1.60 1.40 1.22 1.40 1.00 -----Reverse  $B_{\tau}$  (B× $\nabla B \uparrow$ ) 161138 161136 161143 161147 161144 161145 161148 161146 161151 161150 n\_=4.3E13/cm<sup>3</sup> n\_=4.4E13/cm<sup>3</sup> n.=4.7E13/cm3 n.=5.1E13/cm<sup>3</sup> n\_=5.1E13/cm<sup>3</sup> n.=5.5E13/cm<sup>3</sup> n.=5.6E13/cm<sup>3</sup> n\_=5.7E13/cm<sup>3</sup> n.=6.0E13/cm<sup>3</sup> n.=6.0E13/cm<sup>3</sup> n/n<sub>gw</sub>=0.51  $n/n_{GW} = 0.52$ n/n<sub>GW</sub>=0.57 n/n<sub>gw</sub>=0.61 n/n<sub>gw</sub>=0.61 n/n<sub>gw</sub>=0.65  $n/n_{GW} = 0.67$  $n/n_{GW} = 0.68$ n/n<sub>GW</sub>=0.71 n/n<sub>gw</sub>=0.72 . . . ----------0.000 120 140 -----. . .

- Same shots as in DTS series data (forward and reverse  $B_T$ )
- Inversion of data from 3900-4100 ms (ELM-averaged), both targets on the shelf

