

Single Null Divertor in Negative Triangularity Tokamak

S.Yu. Medvedev^{1,2}, M. Kikuchi^{3,4,8}, T. Takizuka⁵, A.A. Ivanov¹, A.A. Martynov¹, Yu.Yu. Poshekhonov¹, A. Merle⁶, O. Sauter⁶, L. Villard⁶, D. Chen⁷, J. Jiang⁷, J.X. Li⁸, J. Zheng⁸, T. Ando⁹

¹Keldysh Institute of Applied Mathematics, RAS, Russian Federation, ²National Research Nuclear University MEPhl, Russia, ³National Institutes for Quantum and Radiological Science and Technology, Japan, ⁴Institute of Laser Engineering, Osaka University, Japan, ⁵Graduate School of Engineering, Osaka University, Japan, ⁶Swiss Plasma Center, EPFL, Switzerland, ⁸Southwestern Institute of Physics, China, ⁹Institute of Nuclear Energy Safety Technology, CAS, China, ⁹Ex-JAEA, Japan

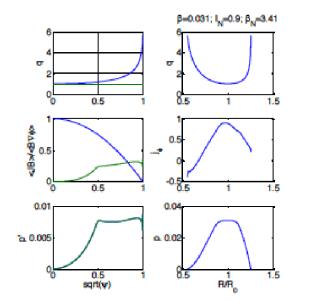
FEC 2016 Kyoto

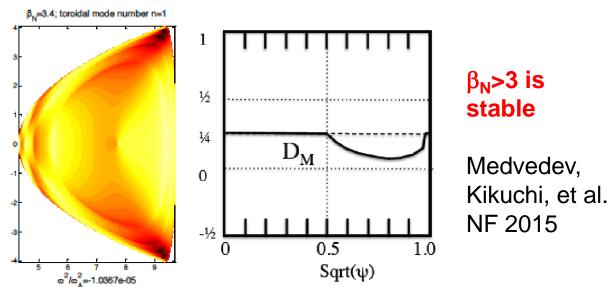
Outline

Motivation

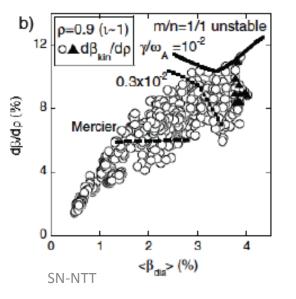
- Negative Triangularity Tokamak (NTT) concept as a prospective Innovative Confinement Concept
- DN NTT and SN NTT
- Theory and experiment
 - Beta limits, pedestal and ELMs, vertical stability
 - Better core confinement in L-mode
- Technical merits and divertor solutions
 - Reactor perspective: SYSCODE calculations
 - TF coil design and high-Tc superconductors
 - FTE divertor
- Discussion

1. Motivation


- Power handling is a major challenge for magnetic confinement fusion, especially tokamak.
- 600MW/700m²~1MW/m² but actual divertor area is much smaller and peak heat load can be 70MW/m² (see. M. Kikuchi, et al., econference on energy, 2014, paper E002)
 We probably need order of magnitude change to solve this issue.
- First step: Divertor priority is higher than core
 - Any fusion energy system must have reliable heat exhaust scenario

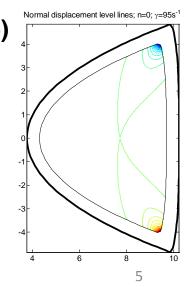

1.1 NTT concept

- A choice negative D
- X-point toward large R region → geometrically wider wetted area
- Make edge pedestal β limit SOFT: not by finite n peelingballooning but by Mercier/n=∞ ballooning!
- Stay in L-mode edge?
- Find new core transport reduction physics
 - Experiment TCV \rightarrow better confinement for δ <0 in L-mode
 - Reactor core is more collisionless
 - Optimization of TEM
 - Trapped electron precession
 - Negative delta reduce "stiffening"
- Beta limits? $\rightarrow \beta_N > 3$ in double null NTT


Medvedev, Kikuchi, et al. NF 2015

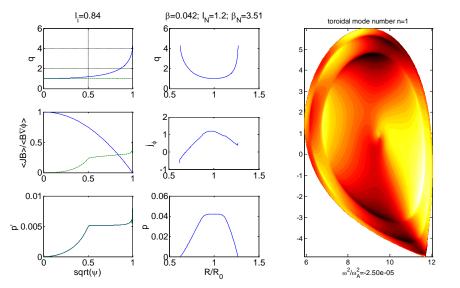
1.1 DN-NTT: S. Medvedev NF2015

Can tokamak be OK with magnetic hill?



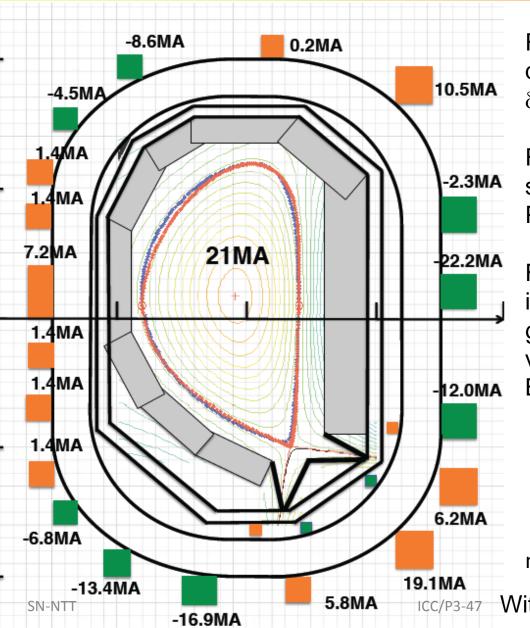
← LHD magnetic hill (Watanabe NF2005) It can reach above Mercier limit.

DN-NTT problems:


Control of power sharing between upper and lower divertor

Relatively higher growth rate of vertical instability: highly non-rigid with finite $j_{sx} \rightarrow$ Move to SN-NTT

ICC/P3-47


2.1 SN-NTT: M. Kikuchi EPS 2015

• Higher elongation k=1.8 due to better vertical stability • n=1 external kink mode limit $\beta_N > 3$ for $I_i \sim 0.9$ with separatrix at the plasma boundary (KINX) • Beta limit enhanced for low upper triangularity

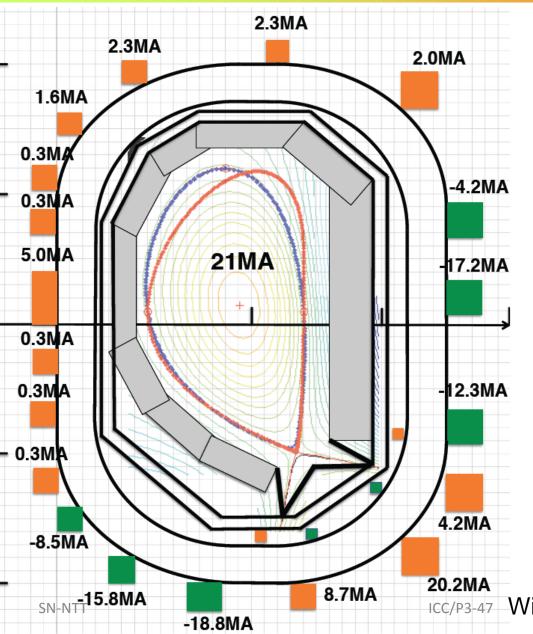
- Free boundary equilibrium calculations with SPIDER code
 - PF coil system compatible with racetrack TF coils
 - Ratio of PF coil currents to plasma current is close to ITER value $\Sigma / I_{PF} / I_p = 5.5$
- Edge stability is determined by nearly internal Mercier modes as in DN-NTT

2.1 Single null NTT configuration [Racetrack TF coils]

 $\begin{array}{l} {\sf R}_{\sf p}{=}9{\sf m},\,{\sf a}_{\sf p}{=}3{\sf m},\,{\sf I}_{\sf p}{=}21{\sf MA},\,{\sf B}_{\sf t}{=}5.86{\sf T}\\ {\sf q}_{95}{=}3.0,\,{\kappa}_{95}{=}1.73,\,{\kappa}_{\sf x}{=}1.8,\,{\delta}_{{\sf U}{\sf x}}{=}{-}0.4,\\ {\delta}_{{\sf L}{\sf x}}{=}{-}0.9 \end{array}$

Racetrack shaped TF coil is best suited for NTT configuration. PF coil currents $\Sigma |I_{PF}|/I_p = 6.8$

For single null NTT, vertical stability is fairly good. With $a_w/a=1.3$, the growth rate is ~14s⁻¹, similar to ITER value (6cm thick steel wall).


Beta limit (w/o wall) $I_i=0.84$

n = 1 betaN = 2.79

- n = 2 betaN = 3.24
- n = 3 betaN = 3.36
- n = 4 betaN = 3.43
- n = 5 betaN = 3.47
- n = infty : betaN = 3.41

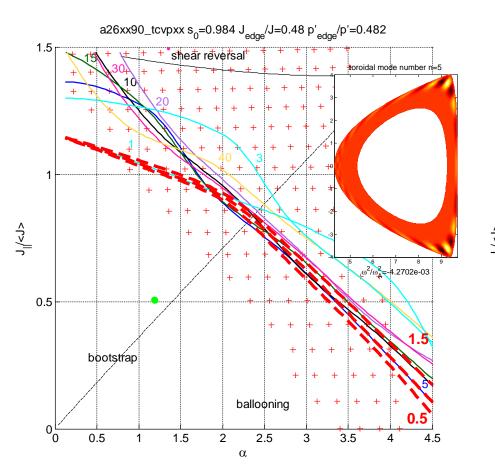
With $a_w/a=1.3$ wall, $\beta_N = 3.3$ n=1 stable

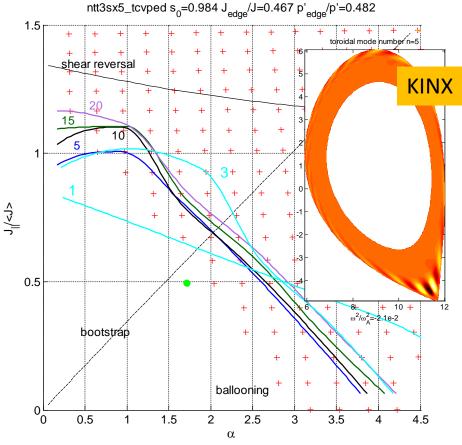
2.1 Single null NTT configuration [Low upper δ]

 $\begin{array}{l} {\sf R}_{\sf p}{=}9{\sf m},\,{\sf a}_{\sf p}{=}3{\sf m},\,{\sf I}_{\sf p}{=}21{\sf MA},\,{\sf B}_{\sf t}{=}5.86{\sf T}\\ {\sf q}_{95}{=}3.1,\,{\kappa}_{95}{=}1.71,\,{\kappa}_{\sf x}{=}1.8,\,{\delta}_{{\sf U}{\sf x}}{=}{-}0.1,\\ {\delta}_{{\sf L}{\sf x}}{=}{-}0.9 \end{array}$

Racetrack shaped TF coil is best suited for NTT configuration. PF coil currents $\Sigma |I_{PF}|/I_p = 5.9$

With $a_w/a=1.3$, the growth rate is ~11s⁻¹, similar to ITER value (6cm thick steel wall) and weakly depends on upper triangularity. Beta limit (w/o wall) $l_i=0.84$ n = 1 betaN = 3.14

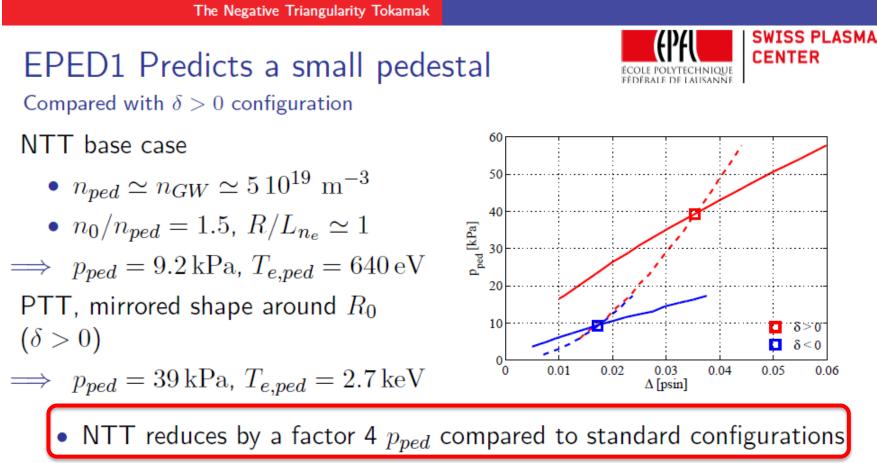

- n = 5 betaN = 3.48
- n = infty : betaN = 3.51


With $a_w/a=1.3$ wall, $\beta_N = 3.56$ n=1 stable

2.1 DN-NTT vs SN-NTT: edge stability

R=7m, a=2.7m (A=2.6), k=1.5, I_N=1.0, I_i=0.77

R=9m, a=3m (A=3), *k*=1.8, *I_N*=1.2, , *I_i*=0.71



red crosses: Mercier/ballooning unstable
color solid: individual modes γ=0

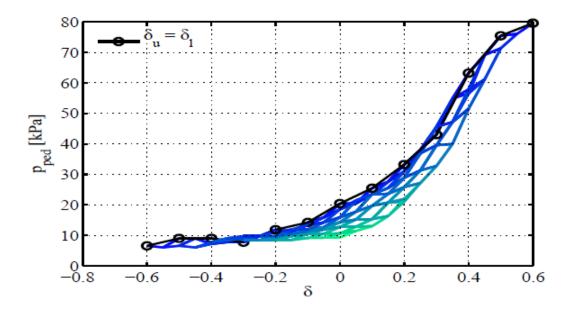
red dash: most unstable γ/(ω_{*}/2)=0.5, 1, 1.5 level lines
color solid: individual modes γ/(ω_{*}/2)= 1 level lines

2.1 EPED-CH (Merle 2016) pedestal width and height

- Good performance with central $T_e = 40 \text{eV}$, $\beta_N = 2.9$.
- Averaged core $R/L_{T_e} \simeq 10 12$, is compatible with present

understanding of core turbulence. This value can even be lowered if

 $n_{ped} > n_{GW}$ or with a larger density peaking factor.

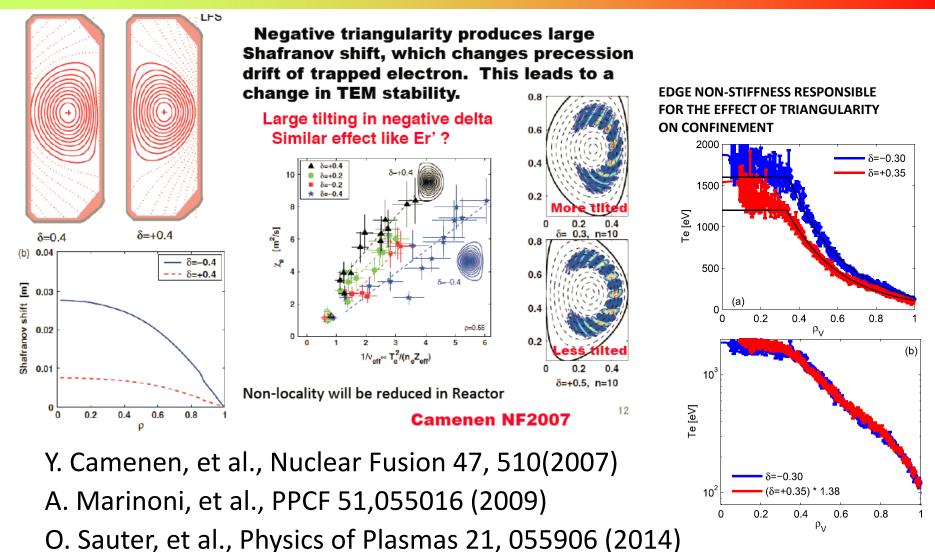

SN-NTT

2.1 EPED-CH: upper/lower triangularity scan

The Negative Triangularity Tokamak

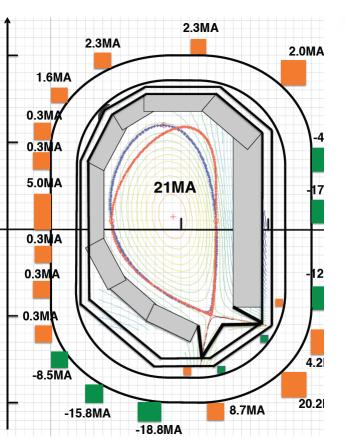
Sensitivity to triangularity p_{ped} and Δ increase when going from $\delta < 0$ to $\delta > 0$

• Double scan in δ_u, δ_l (analytical equilibria, no X-pt)


• p_{ped} seems to depend mostly on the average $\delta = (\delta_u + \delta_l)/2$

• At constant δ , p_{ped} scales unfavorably with $|\delta_u - \delta_l|/2$

 $_{\rm SN-NTT}$ $p_{\it ped}$ seem to reach a minimum when $\delta < -0.2$


2.2 : TCV negative triangularity L-mode

ECH input power, 0.4 MW

3.1 Reactor perspective: SYSCODE calculations

Dehong Chen (INEST), new system code including O. Sauter's refined formula valid for negative delta (O. Sauter, FED 2016)

Racetrack-shaped TF coil

Institute of Nuclear Energy Safety Technology,CAS Key Laboratory of Neutronics and Radiation Safety,CAS

1. Inputs(R=9)

No.	Parameters Name	Sign	Unit	Value After NTT WS	
1.	Major Radius	R	m	9	
2.	Minor Radius	а	m	3	
3.	Elongation (edge,95% flux)	к _х , к ₉₅	1	2, 1.77	
4.	Triangularity (edge,95% flux)	δ_x, δ_{95}	1	-0.5 (lx -0.9,ux -0.1)	
5.	Plasma Current	Ip	MA	21	
6.	Toroidal Magnetic field	B _T	Т	5.86	
7.	Inductance	l_n	H	0.9	
8.	Greenwald Fraction	f _{GW}	1	0.85	
9.	Pressure Ration	β_N	1	2.1	
10.	Confinement time Enhance Factor	Н	1	1.12	
11.	Fraction of α	fα	1	0.05	
12.	Current drive efficiency	Υ20	m ⁻² A/W	0.5	
13.	Fraction of Impurity (Ar)	fimp	1	0.00098	
14.	Temperature Profile Factor (i, e)	$T(r) = (T_0)[1 - (r/a)^2]^{1.3}$			
15.	Density Profile (i,e)	$n(r) = (n_0 - 0.1)[1 - (r/a)^2]^{0.5} + 0.1$			
16.	Confinement Time Scaling Laws	H mode: ITER98(y,2)			
17.	Calculation with the case of steady state operation (inductive current is zero)				

3.1 System code results (continued)

	J	•		
N 0.	Paramaters name	Sign	Unit	Op. 1
1.	Aspect ratio	Α	1	3
2.	Safety Factor	q 95	1	3.25
3.	Cylindrical safety factor	q _{cyl}	1	3.49
4.	Bootstrap current fraction	f _{BS}	1	0.265
5.	Effective Charge Number	Z _{eff}	1	1.40
6.	Line average density	\bar{n}_e	10 ²⁰ m ⁻³	0.63
7.	Volume average temperature	$\langle T_e \rangle, \langle T_i \rangle$	keV	16.7
8.	Plasma volume	V _P	m ³	3261
9.	Plasma surface	Ap	m^2	1753
10.	Fusion power	P _F	MW	3094
11.	Neutron flux at plasma surface	Гп	MW·m ⁻²	1.41
12.	Total heating power	P _{tot}	MW	794
13.	Current driven power	P _{CD}	MW	175
14.	Auxiliary heating power	P _{AUX}	MW	175
15	Transport loss Power	P	MW	691
16.	Radiation loss power	P _{RAD}	MW	130
17.	Threshold power of L-H mode transition	P _{LH}	MW	81
18.	Energy Gain	Q	1	17
19.	Confinement time	τ_E	s	2.42
20.	Confinement time ratio of α particle to plasma energy	η_{α}	1	3.4
21.	Average neutron wall load at first wall*	Γ_{FW}	MW·m ⁻²	1.40

System code output

Radial build

No.		Parameters	Sign	Unit	Optimization
1.	Major Radius		R	m	9
2.	Minor Radius		а	m	3
3.		Scrap of layer	d_SOL	m	0.15
4.	1	First Wall	d_FW	m	
5.		Blanket	d_BLK	m	1.30
б.	Inboard	Shield layer	d_SL	m	
7.	1	Vacuum vessel	d_VV	m	0.46
8.	1	Thermal shield layer	d_ITS	m	0.22
9.		TF Coilds (Nb3Sn)	d_TFC	m	1.53
10.		Scrap of layer	d_SOL	m	0.15
11.		First Wall	d_FW	m	
12.		Blanket	d_BLK	m	1.30
13.		Shield layer	d_SL	m	
14.	Outboard	Vacuum vessel	d_VV	m	1.30
15.	1	Gap	d_GAP	m	1.99
16.	1	Inner thermal shield layer	d_ITS	m	0.22
17.	1	TF Coils (Nb3Sn)	d_TFC	m	1.53
18.	Outer then	mal shield layer	d_OTS	m	0.22
19.		Hoop stress		MPa	156
20.	1	Radial stress		MPa	334
21.	1	Bending stress		MPa	
22.	1	Von Mises Stress		MPa	809
23.		Ripple of Bt		1	0.003
24.	TF coils	Number of TF coils		1	18
25.		Cross section of each TF coil		m ²	1.22
26.		Current of each TF coil		MA	14.7
27.		Magnet stored energy		GJ	75.5
28.		Maximum field at coil		Т	13.6
29.		Maximum field at plasma		Т	8.79

• The required thickness of **Blanket and shield layer is 1.3m** considering the space requirement for fixing, loading and maintaining.

• The thickness of thermal shield layer and vacuum vessel were extrapolated from ITER structure design. In order to ensure the ripple of Bt, the radius of outboard TF coils should be 17.0m, so that there will be a gap 1.99m wide between inner thermal shield layer and vacuum vessel.

• The stress limit of TF coils is 800MPa, so we get the **thickness requirement of TF coils is 1.53m**.

3.2 TF magnet design (T.Ando)

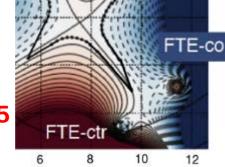
• Three designs of TF superconductor: racetrack shape TF coils based on Nb3Sn ITER technology and Bi-2212 high-Tc superconductor.

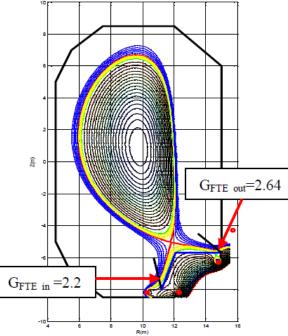
• Since Nb3Sn is sensitive to strain, use of Nb3Sn in such a big magnet (170GJ) is challenging.

• Considering Ti has similar thermal expansion coefficient with Nb3Sn, both SS conduit (ITER type) and Ti conduit designs are explored: the use of Ti conduit will reduce total strain of the Nb3Sn conductor and the expected total strain is -0.05%.

T. ANDO IEEE Trans. Appl. Supercond. 1993, 2004

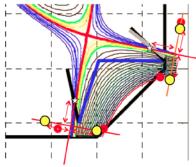
Basic TF parameters: coil size of 15m x 20m, number of coils 18, magnetic energy of 170GJ, maximum field of 13.6T, discharge time 15 s, Turns per coil 152, coil current of 98kA, disks per coil 7.


Conductor type	Nb3Sn CIC (Ti conduit)	Nb3Sn CIC (ss conduit)	Bi2212 impregnated with Pb alloy
Current	98kA	98kA	98kA
Nominal field	13.6T	13.6T	13.6T
Operating Temperature	5.0K	5.0K	20K
Total strain	-0.05%	-0.6%	0%
Current sharing Temperature	6.0K	6.0K	21K
Iop/Ic	0.77	0.65	0.91
Cable diameter	50.2mm	60.3mm	55.3mm
Central cooling OD/ID	10mm/8mm	10mm/8mm	10mm/8mm
Conductor OD	54.2mm	58.4mm	55.3mm
Jacket material	Ti	S.S.	Without
Strand diameter	0.78mm	0.85mm	1.0mm
Cu ratio, Ag ratio	2.0	1.0	1.0
Cabling pattern	3x3x3x3x5x6	3x3x3x4x4x6	3x4x5x5x6
SC strands	1350	1728	1800
Cu strands	1080	864	0
Void fraction	33.3%	33.3%	0
Impregnated material	Without	Without	PbSn


3.3 Flux tube expansion (FTE) coils

Ways to enlarge wetted area at the divertor plates.

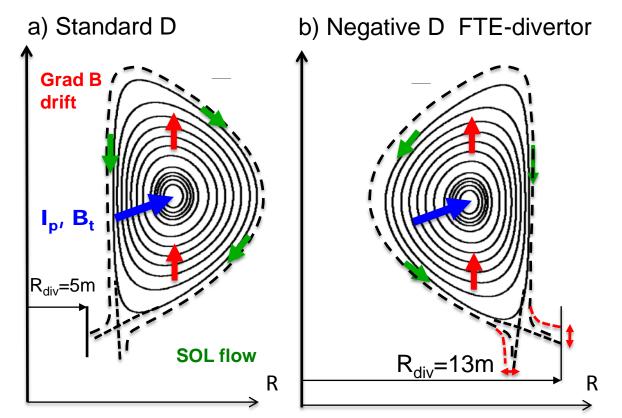
1. Snowflake divertor : Ryutov PoP2007 Snowflake : higher order X point subject to more sensitivity to perturbation.


2. Flux tube expansion divertor Takizuka JNM 2015 Flux tube expansion: More robust to perturbation and needs only ~4MA*turn

- EFIT free boundary equilibrium calculations (J.X.Li) • $I_p = 21$ MA $|I_{FTE}| = 3$ MA; adjust divertor PF currents to maintain the X-point and separatrix leg position • Heat load on the plate is expected over the factor $1/G_{FTE}$ (FTE rate $G_{FTE} = B_{p0}/B_p$)
- Grazing angle outer/inner divertor $\alpha = 7.2^{\circ}/2.7^{\circ} \rightarrow 2.7^{\circ}/1.3^{\circ}$

Factor 2.7 can be obtained for relatively long leg divertor with FTE coil optimization

4 Discussion


- SN-NTT configurations with optimized pressure gradient profiles can be stable against external kink modes for reactor relevant values of normalized beta $\beta_N \sim 3.1$.
 - Low upper triangularity SN-NTT configurations seems to be a good candidate for the reactor design being better compatible with the racetrack TF coils and featuring both higher beta limits and better n = 0 stability compared to the DN-NTT.
- Internal Mercier/ballooning modes set the pedestal height limit, which is much less sensitive to diamagnetic stabilization and pedestal profile variations than conventional peeling-ballooning modes → Mercier mode turbulence for a soft edge limit?
 - The predicted pedestal height in the NTT is a factor of 4 lower compared to the standard positive triangularity configurations. The averaged core scale length of the electron temperature gradient $R/L_{Te} \sim 10-12$ corresponding to $\beta_{\rm N} \sim 3$ is compatible with present understanding of core turbulence.
- The NTT with FTE divertor makes power handling easier by a large factor in reactor relevant configuration
 - 3GW fusion power, racetrack superconducting TF coil design
- Improved confinement in the core of negative triangularity tokamaks still needs to be confirmed in large devices.

Make power handling easier by a Large Factor

Negative D + Flux tube expansion

Simple geometrical

Note: Outboard is much easier to modify.

 $\begin{array}{l} R=9m, \ a=3m \ (A=3) \\ Standard \ D \ shape : R_{div}=5m, \ Negative \ D \ shape : R_{div}=13m \\ Factor \ of \ 2.6 \ for \ R_{div} \\ \hline Flux \ tube \ expansion \ at \ R_{div} \ : \ Factor \ of \ 2.7 \\ \hline Factors : \ 2.6 \ x \ 2.7 = 7 \end{array}$