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Abstract:

We study the role of zonal flows in edge pedestal collapse using a reduced magnetohydrody-
namic (MHD) model. A dramatic change of dynamics happens when ideal ballooning modes
are stabilized. A detailed analysis shows that a zonal flow driven instability is developed
due to a strong excitation of zonal vorticity, resulting in secondary crashes. The presence
of subsidiary bursts after a main crash increases the effective crash time and energy loss.
These simulation results resemble the behavior of compound edge localized modes (ELMs).
Thus, our results indicate that a complete understanding of ELM crash dynamics requires
the self-consistent inclusion of nonlinear zonal flows-MHD interaction and transport physics.

1 Introduction

Understanding dynamical processes involved in the edge localized mode (ELM) crash and
the subsequent energy loss has been one of the central issues in fusion plasma research for
decades. A popular idea regarding the onset of ELMs is based on a linear picture: ELMs
are generated by the destabilization of ideal peeling-ballooning modes[1]. In contrast to
this linear picture, recent nonlinear MHD simulations emphasize the role of nonlinear
dynamics in ELM crashes[2, 3, 4, ?]. In particular, Rhee et. al. highlight the non-
linear processes leading to magnetic field line stochastzation in the pedestal collapse[?].
They showed that various nonlinear energy exchange mechanisms are involved in crash
dynamics.

An important missing piece in previous nonlinear simulations is the absence of zonal
flows (ZFs). The main purpose of this paper is to investigate the possible role of ZF
during a pedestal collapse. For instance, one may expect that ZFs and the secondary
tearing parity modes (STM) might share the free energy released from ballooning modes
(BMs) in the early stage of collapse. This may potentially extend the collapse time due to
the delay of the stochastization process. To study the impact of ZFs on pedestal collapse,
we perform simulations of edge pedestal collapse using a three-field reduced MHD model
implemented in the BOUT++ framework[6].
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2 Simulation Model

We carry out a computational study based on a reduced MHD model consisting of vorticity
and pressure evolution equations, and the Ohms law,
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where variables with subscripts 0 and 1 denote equilibrium and perturbed quantities,
respectively, while those without subscripts mean total quantities. VE = b0 × ∇Φ/B0,
U = (1/B0) (∇2
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parts. η (ηH) is the resistivity (hyper-resistivity) which is related to the Lundquist number
(hyper-Lundquist number) S = µ0R0VA/η = 109 (SH = µ0R

3
0VA/ηH = 1012) with the

major radius R0 = 3.5 (m) and the Alfven speed VA = 9.5× 106 msec−1.
The second term of the right hand side (RHS) of Eq. (2) stems from the divergence of

the E ×B velocity. This term has not been kept in the previous work [5]. Alongside the
last term in RHS of Eq. (1), it describes a generation of geodesic acoustic modes (GAMs)
through a coupling of Φ00 and P10. The third term of the RHS of Eq. (2) represents
a parallel heat loss through stochastic magnetic fields in accordance with the revised
Rechester-Rosenbluth model[7].

The main difference between the present model and the previous ones is that we keep
the zonal component of vorticity (U00) in Eq. (1) and the perpendicular compressibility
in Eq. (2) whose forms are given explicitly,
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where the (m,n) component of potential, vorticity, parallel vector potential, and pressure
fluctuations is denoted by φ̃mn, Ũmn, Ã||mn and P̃mn, respectively, [A,B] is the Poisson
bracket operation, and 〈A〉 represents the flux surface average of a physical quantity A.
The third term represents the contribution to U00 from geodesic curvature coupling due
to the compressibility of the E ×B drift velocity . The last terms of the RHS of Eqs. (4)
and (5) signify the coupling of U00 with the P10 perturbation due to geodesic curvature[8].
We refer to these terms as geodesic curvature coupling (GCC) terms. They drive GAM
oscillations, making the zonal vorticity oscillatory.

The maximum normalized pressure profile, defined as α = −2µ0q
2R0(dP0/dr)/B

2 =
3.87, while the critical value of α beyond which the ideal ballooning mode is unstable,
αc = 2.75. So, the initial pressure profile is strongly unstable to BMs. The toroidal mode
number of the most unstable mode is n = 20.
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FIG. 1: Time evolution of (a) volume integrated intensities for odd parity modes and (b)
the cumulative ratio of thermal energy loss to the initial thermal energy (∆W/W ) during
simulations. Solid (dashed) lines in (a) represent the case with (without) the inclusion of
zonal flow dynamics in the simulation model.

3 Simulation Results

Previous simulation studies demonstrated the generation of strong stochastic magnetic
fields as a feature of a pedestal collapse. The strong stochastization also arises in our
simulations, implying the irrelevance of ZFs to the stochastization process. When ZF is
present, however, the stochastization region becomes broader up to 37%, showing a restart
of the stochastization front after ideal BMs are stabilized. Restart of stochastization front
is particularly interesting because it may imply the possibility of a new dyanmical process
other than destabilization of ideal BMs (ideal BMs are found to be stable at this time
point).

A remarkable difference between the two cases can be observed if one compares time
evolution of even and odd parity fluctuations. Figure 1(a) shows the volume integrated
fluctuation amplitudes for even parity modes during simulations. Solid (dashed) lines
represent when ZF is present (absent). One can make following observations when ZF
dynamics is included in the simulation:

• The maximum amplitude of odd parity modes reduces significantly. Since the odd
parity modes represent the unstable ballooning modes, it means the reduction of
the initial strength of a main crash.

• After a main crash, several smaller, secondary crashes follow [marked by circles in
Fig. 1(a)] in a later stage of the pedestal collapse.

• Occurrence of secondary crashes effectively prolongs the crash time and enhances
the energy loss, as shown in Fig. 1(b). The energy loss enhances up to ∼ 36% when
ZF is included in the analysis.
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FIG. 2: Spatio-temporal evolution of |P10| and zonal vorticity (U00) without [(a) and (c)]
and with [(b) and (d)] GCC terms in Eqs. (4) and (5).

An interesting question is then the origin of the secondry crashes in the later stage of
the pedestal collapse. Repeating the simulations excluding the GCC terms in Eqs. (4) and
(5) showed that subsidiary crashes at later times disappear and the evolution of a crash
is almost identical to the case without ZF. This suggests that GCC is likely responsible
for secondary crashes after a main crash.

To make a further analysis of the GCC effect, we study the spatio-temporal evolution
of the absolute value of P10 (|P10|). Figures 2(a) and (b) show calculation results with (a)
and without (b) the GCC terms. When t . 100, |P10| increases in both cases as a result
of a strong nonlinear interaction between adjacent unstable ballooning modes, i.e., due
to the first term on RHS of Eq. (5). The strong excitation occurs at two radial positions.
When ZF is absent, |P10| diminishes at both locations after the main burst (i.e., when
t & 100). If we take into account the GCC terms in the model, however, |P10| is persistent
during an entire simulation period, in particular, at outer leg position. |P10| at the inner
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leg position shows an oscillatory behaviour in time. Interestingly, the secondary crashes
are concomitant with the bursts of |P10| at the inner leg position shown in Fig. 2(b).
This demonstrates that bursts of |P10| is closely related to the secondary crashes (via ZF
generation through GCC) and possibly governs the zonal flow dynamics in the later stage
of a pedestal collapse.

A dramatic change in zonal vorticity (U00) dynamics can be seen in Figs. 2(c) and
(d) where a comparison is made of U00 for the two cases. When the GCC terms are
absent, U00 is governed by small scale Reynolds stress which is generated by fluctuations.
The characteristic feature of this Reynolds stress generated zonal vorticity is its strongly
fluctuating nature in radial direction, as can be seen at the climax of the main crash
(t ' 70). When t & 100, the radial wiggly structure of U00 disappears and no distinct
feature of U00 is noticed (except for intermittent bursts around the saturation position),
as shown in Fig. 2(c).

When GCC is taken into account [Fig. 2(d)], however, one can make the following
interesting observations:

• The initial evolution of U00 (i.e., when t ≤ 70) is almost identical to that of Fig. 2(c).
This confirms that zonal vorticity does not play a significant role in the early phase
of the pedestal collapse (or the main crash) where ideal ballooning modes overwhelm
the dynamics.

• After the main crash, a strong zonal vorticity activity is nucleated near ψN '
−0.23. Note that U00 propagates outward in contrast to inward propagation of the
stochastization front.

• The time for the second crash at t ' 110 coincides reasonably well with the time of
the second burst of stochastization and radially inward propagation.

The oscillatory behaviour of U00 originates from the GCC terms, whose frequency
can be easily estimated by taking a time derivative of Eq. (4), which yields ω = 2πf '√

20/3cs/R, where cs =
√
Te/mi and R is the major radius. Substititing the parameters

being used in the simulation, cs ' 6×105 m/sec and R ' 4.5 m, we obtain τGCC = 1/f '
1.82 × 10−5 sec. This estimation accurately reproduces the oscillation period obtained
from Fig. 2(d) giving rise to τ ' 50τA ' 1.85× 10−5sec.

All these observations indicate that the GCC terms produce strong, oscillatory U00

at ψN ' −0.23. Reynolds and Maxwell stresses (not shown here) are almost exactly
cancelled each other making their combined effects on GAM generation negligible. Once
generated, it propagates outward. The propagating nature of U00 indeed stems from GCC.
The enhancement of zonal vorticity due to GCC is in accordance with a previous study
reporting the increase of ZF energy by geodesic acoustic coupling as plasma β becomes
high[9]. The GCC-driven zonal flow shear plays a crucial role in the later phase of a
pedestal collapse when the initially unstable BMs are significantly attenuated.
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FIG. 3: Time evolution of (a) |P10| and |U00|, and |Φ00| at ψN = −0.23 during the
simulation. Dashed line indicates t = 120 (just after the second crash occuring at t = 110)
where |Φ00| is maximized.

4 Interpretation and implication

The bursting nature of |P10| suggests destabilization of some instability. This instability,
if it exists, should manifest itself after ideal MHD modes are completely stabilized because
αmax ≤ αc when t & 65τA.

To examine if a new instability other than ideal BMs is indeed present or not, we
perform a linear stability analysis using the pressure profile and the radial zonal vorticity
pattern at t = 120 corresponding to the time just after the second crash which occurs
at t ' 110. Time evolution of |Φ00| at ψN = −0.23 is shown in Fig. 3(a). At t = 120,
the amplitude of |P10| becomes a local maximum value while that of U00 drops to a local
minimum (not shown here). A noticeable observation is that the amplitude of zonal
potential (|Φ00|) at ψN = −0.23 becomes maximized at this time, as shown in Fig. 3(a).

Figure 3(b) shows the results of the linear stability analysis. Surprisingly, the plasma
becomes unstable at all toroidal mode numbers. In particular, higher n-modes grow
faster than lower ones. Since the ideal BMs are completely stabilized at this time, one
can interpret this instability as coming entirely from zonal modes.

To show that the instability is driven only when the amplitude of U00 is sufficiently
large, we repeat the linear analysis using parameters at different time points where U00

is relatively weak. The linear stability analysis at t = 70 as a representative time point
at the initial phase of the crash, shows that all modes are stable. This demonstrates that
the onset of a new instability after the main crash is due to the strong excitation of zonal
modes.

The fact that the mode becomes destabilized at maximum zonal potential suggests
that it may be a tertiary mode or the generalized Kelvin-Helmholtz mode. This is probable
if one notes that the mode begins to be destabilized at the inner region where magnetic
shear is weaker than the outer region. The onset condition of ZF driven instability is
that the condition qr � Ky should be met. Here, qr ≡ |(1/Φ00))(dΦ00/dr)| is the radial
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wavenumber of zonal potential and Ky is the poloidal mode number of the mode. In order
to check if this condition is met at the onset time of the instability, we calculate qr and
Ky corresponding to n = 20 and n = 40 modes, which are the two most dominant modes
at this time. Figure 3(c) shows Ky and qr as a function of ψN . One can see that the
onset condition of the ZF-driven instability for n = 20 is satisfied at ψN & −0.20 which
is shifted a little from ψN = −0.23. Note that the n = 40 mode [dotted line in Fig. 3(c)]
does not cause the tertiary instability over the entire region of the plasma in spite of its
stronger destabilization than the n = 20 mode.

From these analyses, we conclude that the onset of ZF-driven instability is responsible
for the secondary crashes after the primary one. This instability gives rise to mesoscale
crashes and, consequently, increase the energy loss. It is unclear whether this instability
is the tertiary mode or the generalized Kelvin-Helmholtz instability at this time, whose
identification is left as a future theoretical endeavour.

Two points are worth mentioning here. First, the physics of zonal vorticity ↔ GCC
coupling has not been fully elucidated, even though their connection is clear in Eqs. (4) and
(5). To this end, it is necessary to perform an analytic study, which is under investigation.
Second, the level of GAM amplitude in this paper should be considered as a maximized
one because we neglect GAM damping in our model. This, however, will not change
either the dynamical processes at play, or our main conclusions, because the pedestal
collapse (∼ 100 τA) has a shorter time scale than that of GAM damping, and so do GAM
oscillations whose frequency is typically several times larger than the decay rate [10].
Thus, the inclusion of GAM damping is expected to weaken the GAM amplitude, but not
expected to change our main conclusions in this paper.

The presence of secondary crashes extend the effective crash time and increase the
energy loss. All these observations show symptoms of the “compound ELMs” which are
routinely observed in tokamak experiments. In this sense, the present study may shed
some light on the physics of compound ELMs. We note that no systematic theoretical
study has been carried out on the physics origin giving rise to parasitic crashes after a
main ELM crash. Clearly, these small parasitic bursts shown in experiments must not
be related to the peeling-ballooning modes because they are produced when ideal modes
are stable and during the relaxation phase of the pressure profile. Based on nonlinear
reduced MHD simulations, we propose that parasitic crashes found in compound ELMs
may originate from the excitation of strong E × B shear due to GCC and a consequent
development of a mesoscale instability.

5 Summary and Conclusions

Our main findings in this study are summarized as follows: (1) A series of smaller crashes
(compared to a main crash) occur due to the strong excitation of zonal flows and conse-
quent development of a ZF-driven instability. This mesoscale instability governs the later
stage of a pedestal collapse where ideal MHD modes become completely stabilized; (2)
The secondary crashes increase both the effective crash time and the total energy loss.

We pointed out that they are symptoms of “compound ELMs” which are characterized
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by a series of smaller crashes after a main one. These observations lead us to make a
prediction that compound ELMs may be accompanied with a strong excitation of GAM
perturbations.

The ZF strength observed in our work is probably an overestimation due to the absence
of GAM damping in our model. There is, therefore, a caveat in direct comparison of our
results to the experimental observations. Inclusion of a proper GAM damping effect is
expected to make the subsidiary crashes weaker. Nevertheless, it will not change our
main results and conclusions due to the smallness of the crash time compared to the
typical GAM damping time. An accurate treatment of P10 fluctuations requires including
the neoclassical Pfirch–Schuluter effect self-consistently. To do so, we need to consider
parallel flow dynamics. These are left as subjects for future studies. An analytic study
of ZF-driven instability in the presence of GCC is also under investigation and will be
reported in the future.
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