

New <u>DPFD ML Software</u> trained with ~2,000 data samples from JET with similar prediction performance to JET's APODIS code trained with ~2,000,000 data samples;
Increased "false" alarms allow associated chains to be analyzed for useful additional information on disruption precursors.

Big Data Machine Learning Disruption Predictions

 (i) What has the fusion community achieved over past two years using Machine Learning?
 A new ML predictive tool for disruptions is now capable of developing more advanced physicsbased predictors.

(ii) Where does fusion R&D stand right now?
Key current R&D goals: (1) achieve better than 95% predictive accuracy by moving beyond
0-D time trace analysis to higher-D to ensure higher physics fidelity; and (2) establish crossmachine portability of predictive software beyond JET to other tokamak systems.

(iii) Which critical issues, next steps &
Challenges demand attention to avoid gaps/ delays on way to the final goal?
Critical issues/major challenges to this urgent goal include Identification of new, higher-D physics classifiers such as Neoclassical Tearing Modes (NTM's) & deployment of powerful new ML methods such as Deep Learning Recurrent Neural Nets (RNN's) to help mitigate failure risks.