Advances in Steady-State Hybrid Regime in DIII-D – A Fully-Noninductive, ELM-Suppressed Scenario for ITER

⁶University of California – San Diego

⁸Oak Ridge Associated Universities

⁷Oak Ridge National Laboratory

⁹University of California – Irvine

by C.C. Petty¹

In collaboration with

R. Nazikian², F. Turco³, Xi Chen¹, E.J. Doyle⁴, T.E. Evans¹, N.M. Ferraro², J.R. Ferron¹, A.M. Garofalo¹, B.A. Grierson², C.T. Holcomb⁵, A.W. Hyatt¹, E. Kolemen², G.J. Kramer², R.J. La Haye¹, C. Lasnier⁵, N. Logan², T.C. Luce¹, D. Orlov⁶, T.H. Osborne¹, D.C. Pace¹, J.M. Park⁷, C. Paz-Soldan¹, T.W. Petrie¹, P.B. Snyder¹, W.M. Solomon¹, N.Z. Taylor⁸, K.E. Thome⁸, M.A. Van Zeeland¹ and Y. Zhu⁹

¹General Atomics
²Princeton Plasma Physics Laboratory
³Columbia University
⁴University of California – Los Angeles
⁵Lawrence Livermore National Laboratory

Presented at the 26th IAEA Fusion Energy Conference Kyoto, Japan

October 17-22, 2016

Work supported in part by the US DOE under DE-FC02-04ER54698, DE-AC02-09CH11466, DE-FG02-04ER54761, DE-AC52-07NA27344, DE-FG02-07ER54917, and DE-FG03-97ER54271.

Experiments in DIII-D Have Coupled ELM Suppression With High- β , Fully Noninductive Scenario for First Time

 Goal is to develop a regime that extrapolates to steadystate mission (Q_{fus} = 5) for ITER

Experiments in DIII-D Have Coupled ELM Suppression With High- β , Fully Noninductive Scenario for First Time

- Goal is to develop a regime that extrapolates to steadystate mission (Q_{fus} = 5) for ITER
 - ELM suppression using resonant magnetic perturbations (RMP)
 - Integration of high-β hybrid scenario with Argon radiating divertor

Outline

- I. Characteristics of Steady-State Hybrids
- II. Integration With RMP ELM Suppression
- III. Impurities and Radiating Divertor
- IV. Extrapolation to ITER Steady-State
- V. Summary

4

What is a "Hybrid"? – Low q_{min} Scenario With High Stability, Excellent Confinement and Good Stationarity

- Self-organized current profile with $q_{min} \gtrsim 1$
- An n = 2 or n = 3 tearing mode is present
- Beta can exceed ideal (n = 1) no-wall limit
- Pulse length in DIII-D limited only by NBI duration

Current Profile Alignment is Not Needed in Hybrids Owing to Flux Pumping from Tearing Modes

Current Profile Alignment is Not Needed in Hybrids Owing to Flux Pumping from Tearing Modes

Current Profile Alignment is Not Needed in Hybrids Owing to Flux Pumping from Tearing Modes

- Self-organized current profile "ignores" peaked current drive
 → high CD efficiency maintained
- High CD efficiency allows 100% noninductive operation at modest bootstrap current fraction

Experimental β_{N} can Reach 80–90% of Calculated Ideal-Wall n=1 Limit

 Hybrids with RMP ELMsuppression and ITER similar shape reach ideal no-wall limit

> Aim for $\beta_N \sim 4$ in the future

• With higher confinement ($H_{98y2} = 1.6$) in DND plasma shape, steady-state hybrids achieve $\beta_N/\ell_i=4.9$

F. Turco, Phys. Plasmas 2015

Outline

I. Characteristics of Steady-State Hybrids

II. Integration With RMP ELM Suppression

- III. Impurities and Radiating Divertor
- IV. Extrapolation to ITER Steady-State
- V. Summary

RMP ELM Suppression in Steady-State Hybrids Uses Novel High- β Amplification of Modest-Level 3D Fields

DIII-D has two rows of six coils for spectral control

11

High Density of Rational Surfaces at Top of Pedestal May Explain Wide q₉₅ Window for ELM Suppression

High Density of Rational Surfaces at Top of Pedestal May Explain Wide q₉₅ Window for ELM Suppression

Linearly-calculated Chirikov parameter for island overlap suggests magnetic island chain forms at top of pedestal

High Density of Rational Surfaces at Top of Pedestal May Explain Wide q₉₅ Window for ELM Suppression

 Linearly-calculated Chirikov parameter for island overlap suggests magnetic island chain forms at top of pedestal

Magnetic Perturbations Have Only a Minor Effect on Pedestal Pressure and Confinement

 Pedestal slightly narrows with RMP, small reduction in pedestal height correlates with small drop (≈10%) in H_{98v2}

 Pedestal remains close to lowcollisionality kink-peeling stability boundary with RMP

Small, High Frequency Bursts of Particle and Energy Loss to Divertor Persist Throughout ELM Suppression

 Peak heat flux exceeds average heat flux by only 20–30%

IR camera measurement of inner strike point

Coupling of RMP to Weakly-Stable Edge Kink Mode Allows ELM Suppression to Survive at Low Rotation

- Neutral beam torque is stepped down to ITER-relevant value
 - ELM suppression usually lost at low torque in ITER baseline

• Little change in ELM suppression observed as rotation is reduced

Note: locked modes are still an issue for low torque plasmas

Outline

- I. Characteristics of Steady-State Hybrids
- II. Integration With RMP ELM Suppression
- III. Impurities and Radiating Divertor
- IV. Extrapolation to ITER Steady-State
- V. Summary

Impurity Accumulation is Not Problematic in ELM-Suppressed, Steady-State Hybrids

- Particle confinement time of non-recycling Cl atoms measured with short (~10 ms) gas puffs
- Particle confinement

 (¹⁷Cl) ~ 2τ_E to 3τ_E, similar
 to ELMy H-mode

High Power, High- β Hybrid Scenario is Integrated With Argon Radiating Divertor for Heat Flux Mitigation

- Combined Argon seeding and strong D₂ puffing doubles radiative power to 55% of input power
 - Characteristic radiative fraction for ITER is 70% – 80%
- High performance is maintained during radiating divertor operation
 - $\beta_N = 3.0$, $H_{98y2} = 1.35$
 - Density increase with puffing → not fully noninductive
- Zeff increases by less than 10%

See EX/P3-27 by T. Petrie

20

Peak Heat Flux in Upper Outer Divertor Falls by a Factor of Two for Argon-Based Radiating Divertor

21 NATIONAL FUSION FAC. SAN DIEGO

Outline

- I. Characteristics of Steady-State Hybrids
- II. Integration With RMP ELM Suppression
- III. Impurities and Radiating Divertor
- IV. Extrapolation to ITER Steady-State
- V. Summary

ELM-Suppressed Hybrids Scale Favorably to ITER Steady-State Scenario With $I_P = 9.6$ MA and $Q_{fus} \ge 5$

- Extrapolation done at fixed β, v*, q and plasma shape
- Current drive power (≈85 MW) calculated using CD efficiency from ITER Physics Basis
- Required confinement scaling is

 $H_{98y2} = 1.2$ $\chi \propto \chi_B \left(\rho^*\right)^{0.5}$

Simulation of Hybrid Plasmas With Central Current Drive in ITER Shows Steady-State Mission is Attainable

- Self-consistent steady-state prediction of core transport (TGLF), edge pedestal (EPED1), current drive (NUBEAM, TORAY) and equilibrium (ESC)
 - Pedestal height raised 1.25× to better match experiment
 - J_{TOT} profile broadened to give q_{min}=1.05 to be "hybrid-like"

I _P	9.5 MA	I _{NI} /I _P	1.01
n_e/n_{GW}	1.14	P _{fus}	487 MW
β _N	3.0	P _{CD}	106 MW
H _{98y2}	1.2	Q _{fus}	4.6

Summary – ELM Suppression has been Integrated With High- β , Steady-State Hybrid Scenario Relevant to ITER

- Uses n = 3, odd parity RMP to excite edge kink modes that are marginally stable and amplifying
 - Benefits: modest RMP amplitude, wide q₉₅ window, small effect on pedestal, ELM suppression at low rotation
- High power, high- β hybrid scenario is also integrated with an Argon-based radiating divertor, reducing heat flux by 50%
- Scenario scales to steady-state in ITER with $P_{fus} \approx 460 \text{ MW} @ Q_{fus} \approx 5 \text{ and } H_{98y2} = 1.2 (further optimization possible)$

Additional Slides

Hybrid With Central Current Drive Sustains 1.0 MA Fully Noninductively With $\beta_N \approx 3.7$ and $H_{98y2} \approx 1.6$

- Pulse length limited by NBI duration
- Reproducible zero loop voltage
- Small 3/2 tearing mode prevents sawteeth

27

Experimental Noninductive Current Fraction Matches TRANSP Modeling

$$I_{NI} = I_P - I_{\rm ohm}$$

 Ohmic current found from measured loop voltage profile using MSE-constrained EFITs

$$I_{\text{ohm}} = \int \sigma \frac{V_{\text{loop}}}{R_0} \rho d\rho$$
$$V_{\text{loop}} = -2\pi \frac{\partial \psi}{\partial t}$$

Combination of Central ECCD and High β_P (i.e., Bootstrap Current) Drives Surface Loop Voltage to Zero

- V_{surf} lower with ECCD for same
 β_P
- Overdrive of plasma current (i.e., V_{surf} < 0) is observed when β_P > 1.9

Measured Loop Voltage Profile Supports Contention That Current Profile is Broader Than Predicted by TRANSP

- For NBI-only hybrid, TRANSP predicts a flat V_{loop} profile, but actual peaked V_{loop} indicates current profile is still broadening
- For ECCD hybrid, TRANSP predicts center is overdriven, but actual flat V_{loop} (≈0) profile indicates current profile is stationary

Experiments Support Theory That Helical Core Displacements can Broaden Current Profile

- An electrostatic dynamo EMF arises to balance helical modulation of parallel current density
- Imposing helical core using n = 1 field in plasma without 3/2 mode drives measurable flux pumping

Plasmas With ECCD Exhibit Much Weaker Core MHD Than Similar Plasmas Without ECCD

- Cross-amplitude spectrum from CO₂ interferometer
- Large number of modes (8-10) excited in case without ECCD
 - Combination of low
 frequency NTM and (likely)
 TAE/EAE
- High frequency AEs disappear in case with ECCD, replaced by fishbones

Without ECCD, Large Beam Ion Diffusion is Needed in TRANSP to Match Experimental Neutron Rate

Without ECCD

• With ECCD

Thermal Diffusivities Increase Systematically With ECH Power, With Ions Having the Largest Increase

- Since $\chi_e \approx \chi_i$, using equal amounts of electron and ion heating will naturally give $T_e \approx T_i$
- Flattening of D_{elec} profile during ECH causes density profile to broaden

Central Electron Heating Rapidly Increases Electron and Ion Thermal Diffusivities

- Transport coefficients take into account the time varying beam ion transport
- Diffusivities are nearly constant with time (except when ECH power changes)
- Compared to thermal diffusivities, particle diffusivity has weak dependence on ECH

