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Experiments in DIII-D Have Coupled ELM Suppression 
With High-β, Fully Noninductive Scenario for First Time 

•  Goal is to develop a regime 
that extrapolates to steady-
state mission (Qfus = 5) for ITER 
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Experiments in DIII-D Have Coupled ELM Suppression 
With High-β, Fully Noninductive Scenario for First Time 

•  Goal is to develop a regime 
that extrapolates to steady-
state mission (Qfus = 5) for ITER 

–  ELM suppression using 
resonant magnetic 
perturbations (RMP) 

–  Integration of high-β 
hybrid scenario with 
Argon radiating divertor 
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Outline 

I.  Characteristics of Steady-State Hybrids 

II.  Integration With RMP ELM Suppression 

III.  Impurities and Radiating Divertor 

IV.   Extrapolation to ITER Steady-State 

V.  Summary 
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What is a “Hybrid”? – Low qmin Scenario With High 
Stability, Excellent Confinement and Good Stationarity 

•  Self-organized current profile with 
qmin > 1 

•  An n = 2 or n = 3 tearing mode is 
present 

•  Beta can exceed ideal (n = 1) 
no-wall limit 

•  Pulse length in DIII-D limited only 
by NBI duration 
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Current Profile Alignment is Not Needed in Hybrids 
Owing to Flux Pumping from Tearing Modes 

•  Self-organized current profile 
“ignores” peaked current drive  
! high CD efficiency maintained 
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Current Profile Alignment is Not Needed in Hybrids 
Owing to Flux Pumping from Tearing Modes 

•  TRANSP modeling confirms current 
profile is anomalously broad ! 
qmin should drop well below 1 

•  Self-organized current profile 
“ignores” peaked current drive  
! high CD efficiency maintained 

“Flux pumping” physics discussed in EX/1-1 by P. Piovesan 
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Current Profile Alignment is Not Needed in Hybrids 
Owing to Flux Pumping from Tearing Modes 

•  High CD efficiency allows 100% 
noninductive operation at modest 
bootstrap current fraction 

•  Self-organized current profile 
“ignores” peaked current drive  
! high CD efficiency maintained 
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Experimental βN can Reach 80–90% of Calculated 
Ideal-Wall n=1 Limit 

•  Hybrids with RMP ELM-
suppression and ITER 
similar shape reach ideal 
no-wall limit 

•  With higher confinement 
(H98y2 = 1.6) in DND plasma 
shape, steady-state 
hybrids achieve βN/ℓi=4.9 

F. Turco, Phys. Plasmas 2015 

"  Aim for βN ~ 4 in 
the future DCON 

DCON 
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Outline 

I.  Characteristics of Steady-State Hybrids 

II.  Integration With RMP ELM Suppression 

III.  Impurities and Radiating Divertor 

IV.   Extrapolation to ITER Steady-State 

V.  Summary 
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RMP ELM Suppression in Steady-State Hybrids Uses 
Novel High-β Amplification of Modest-Level 3D Fields 

DIII-D has two rows of six coils for spectral control 

Odd parity Even Parity 

n=3 n=3 

couples well 
to high-q95 

couples well 
to low-q95 

excites 
marginally 
stable edge 
kink mode 

excites more 
stable edge 

kink mode 
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High Density of Rational Surfaces at Top of Pedestal 
May Explain Wide q95 Window for ELM Suppression 
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High Density of Rational Surfaces at Top of Pedestal 
May Explain Wide q95 Window for ELM Suppression 

•  Linearly-calculated Chirikov parameter 
for island overlap suggests magnetic 
island chain forms at top of pedestal 
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High Density of Rational Surfaces at Top of Pedestal 
May Explain Wide q95 Window for ELM Suppression 

•  Linearly-calculated Chirikov parameter 
for island overlap suggests magnetic 
island chain forms at top of pedestal 

Amplifying 
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Magnetic Perturbations Have Only a Minor Effect on 
Pedestal Pressure and Confinement 

•  Pedestal slightly narrows with 
RMP, small reduction in 
pedestal height correlates 
with small drop (≈10%) in H98y2 

•  Pedestal remains close to low-
collisionality kink-peeling 
stability boundary with RMP 

νe,ped=0.15 * 
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Small, High Frequency Bursts of Particle and Energy 
Loss to Divertor Persist Throughout ELM Suppression 

•  Frequency ≈ 500 Hz •  Peak heat flux exceeds average 
heat flux by only 20-30% 

IR camera measurement 
of inner strike point 

νe,ped=0.15 * 
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•  Little change in ELM suppression 
observed as rotation is reduced 

•  Neutral beam torque is stepped 
down to ITER-relevant value 

-  ELM suppression usually lost 
at low torque in ITER baseline 

Note: locked modes are still an 
issue for low torque plasmas 

Coupling of RMP to Weakly-Stable Edge Kink Mode 
Allows ELM Suppression to Survive at Low Rotation 
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Outline 

I.  Characteristics of Steady-State Hybrids 

II.  Integration With RMP ELM Suppression 

III.  Impurities and Radiating Divertor 

IV.   Extrapolation to ITER Steady-State 
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Impurity Accumulation is Not Problematic in ELM-
Suppressed, Steady-State Hybrids 

•  Particle confinement 
time of non-recycling Cl 
atoms measured with 
short (~10 ms) gas puffs 

•  Particle confinement 
(17Cl) ~ 2τE to 3τE, similar 
to ELMy H-mode 

Å 



20 

High Power, High-β Hybrid Scenario is Integrated With 
Argon Radiating Divertor for Heat Flux Mitigation 

•  Combined Argon seeding and 
strong D2 puffing doubles radiative 
power to 55% of input power 

-  Characteristic radiative 
fraction for ITER is 70% – 80% 

•  High performance is maintained 
during radiating divertor operation 

-  βN = 3.0, H98y2 = 1.35 

-  Density increase with puffing ! 
not fully noninductive 

•  Zeff increases by less than 10% 

See EX/P3-27 by T. Petrie 
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Peak Heat Flux in Upper Outer Divertor Falls by a 
Factor of Two for Argon-Based Radiating Divertor 

•  IR camera measurement 
of divertor heat flux 
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Outline 

I.  Characteristics of Steady-State Hybrids 

II.  Integration With RMP ELM Suppression 

III.  Impurities and Radiating Divertor 

IV.   Extrapolation to ITER Steady-State 

V.  Summary 
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ELM-Suppressed Hybrids Scale Favorably to ITER 
Steady-State Scenario With IP = 9.6 MA and Qfus ≥ 5 

•  Extrapolation done 
at fixed β, ν*, q and 
plasma shape 

•  Current drive 
power (≈85 MW) 
calculated using 
CD efficiency from 
ITER Physics Basis 

•  Required confine-
ment scaling is 

H98y2 = 1.2 

χ ∝ χB ρ*( )
0.5
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Simulation of Hybrid Plasmas With Central Current Drive 
in ITER Shows Steady-State Mission is Attainable 

•  Self-consistent steady-state 
prediction of core transport 
(TGLF), edge pedestal (EPED1), 
current drive (NUBEAM, TORAY) 
and equilibrium (ESC) 
-  Pedestal height raised 1.25× to 

better match experiment 

-  JTOT profile broadened to give 
qmin=1.05 to be “hybrid-like” 

IP 9.5 MA INI/IP 1.01 

ne/nGW 1.14 Pfus 487 MW 

βN 3.0 PCD 106 MW 

H98y2 1.2 Qfus 4.6 

FASTRAN/IPS simulation 
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•  Uses n = 3, odd parity RMP to excite edge kink modes that are 
marginally stable and amplifying 

–  Benefits: modest RMP amplitude, wide q95 window, small 
effect on pedestal, ELM suppression at low rotation 

•  High power, high-β hybrid scenario is also integrated with an 
Argon-based radiating divertor, reducing heat flux by 50% 

•  Scenario scales to steady-state in ITER with Pfus ≈ 460 MW @  
Qfus ≈ 5 and H98y2 = 1.2 (further optimization possible) 

Summary – ELM Suppression has been Integrated With 
High-β, Steady-State Hybrid Scenario Relevant to ITER 
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Additional Slides 
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Hybrid With Central Current Drive Sustains 1.0 MA Fully 
Noninductively With βN≈3.7 and H98y2≈1.6 

τR 

•  Pulse length 
limited by NBI 
duration 

 
•  Reproducible 

zero loop 
voltage 

 
•  Small 3/2 

tearing mode 
prevents 
sawteeth 
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•  Ohmic current found 
from measured loop 
voltage profile using 
MSE-constrained EFITs 

Experimental Noninductive Current Fraction Matches 
TRANSP Modeling 

INI = IP − Iohm

Iohm = σ
Vloop
R0

∫ ρdρ

Vloop = −2π
∂ψ
∂t
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Combination of Central ECCD and High βP (i.e., Boot-
strap Current) Drives Surface Loop Voltage to Zero 

•  Vsurf lower with 
ECCD for same 
βP 

•  Overdrive of 
plasma current 
(i.e., Vsurf < 0) is 
observed when 
βP > 1.9 
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Measured Loop Voltage Profile Supports Contention That 
Current Profile is Broader Than Predicted by TRANSP 

•  For NBI-only hybrid, TRANSP 
predicts a flat Vloop profile, but 
actual peaked Vloop indicates 
current profile is still broadening 

•  For ECCD hybrid, TRANSP predicts 
center is overdriven, but actual flat 
Vloop (≈0) profile indicates current 
profile is stationary 
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Experiments Support Theory That Helical Core 
Displacements can Broaden Current Profile 

•  An electrostatic dynamo EMF 
arises to balance helical modula-
tion of parallel current density 

•  Imposing helical core using n = 1 
field in plasma without 3/2 mode 
drives measurable flux pumping 
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See EX/1-1 by P. Piovesan 
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Plasmas With ECCD Exhibit Much Weaker Core MHD 
Than Similar Plasmas Without ECCD 

With ECCD 

No ECCD 
•  Cross-amplitude spectrum from 

CO2 interferometer 

•  Large number of modes (8-10) 
excited in case without ECCD 

–  Combination of low 
frequency NTM and (likely) 
TAE/EAE 

•  High frequency AEs disappear 
in case with ECCD, replaced by 
fishbones 
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Without ECCD, Large Beam Ion Diffusion is Needed in 
TRANSP to Match Experimental Neutron Rate 

•  Without ECCD •  With ECCD 
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Thermal Diffusivities Increase Systematically With ECH 
Power, With Ions Having the Largest Increase 

•  Since χe ≈ χi, using 
equal amounts of 
electron and ion 
heating will 
naturally give Te ≈ Ti 

•  Flattening of Delec 
profile during ECH 
causes density 
profile to broaden 
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Central Electron Heating Rapidly Increases Electron 
and Ion Thermal Diffusivities 

•  Transport coefficients 
take into account the 
time varying beam ion 
transport 

•  Diffusivities are nearly 
constant with time 
(except when ECH 
power changes) 

•  Compared to thermal 
diffusivities, particle 
diffusivity has weak 
dependence on ECH 


