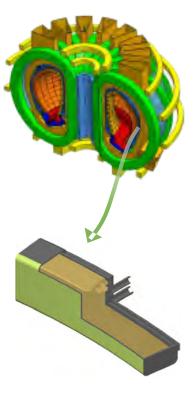


Accomplishment of DEMO R&D Activity of IFERC Project in BA activity and Strategy toward DEMO & Progress of conceptual design study on Japanese DEMO

<u>Hiroyasu Tanigawa</u> Ryoji Hiwatari

National Institutes for Quantum and Radiological Science and Technology (QST) JAPAN

Technical demands on DEMO Design and R&D activity

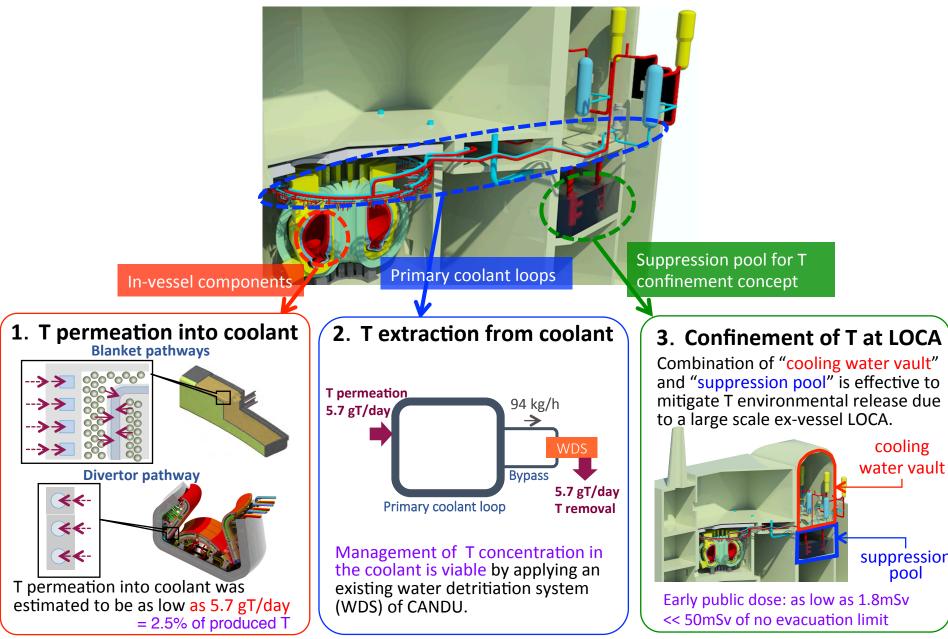

Conceptual design of JA DEMO

Fusion Power compatible with divertor heat-handling=> P_f = 1.5 - 2.0 GWDevice size compatible with operation flexibility including pulse operation=> R = 8m classBreeding Blanket system consisted with the rational combination=> R = 8m class=> Water Cooled Ceramic Breeder for primary system and advanced option for DEMO-TBM

Need to establish basic strategy of safety assurance of fusion system

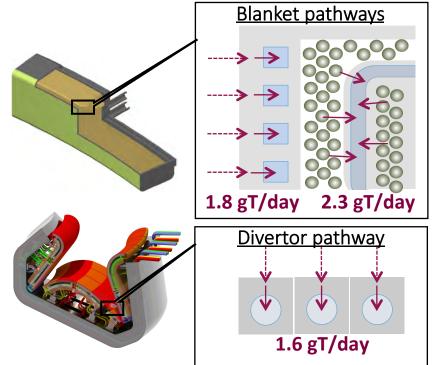
Design challenges to overcome weaknesses in water-cooled DEMO

- ✓ <u>T permeation</u> into the primary coolant in in-vessel components
- ✓ <u>T management in the</u> primary coolant loop
- ✓ Confinement concept for T release from the primary coolant loop in a pipe break accident.


Technical challenges on materials and technologies related to breeding blanket

✓ <u>Structural material</u> which fulfill the technical demands

 ✓ <u>Neutron multiplier and T breeder</u> compatible with water-cooled system
 ✓ <u>Advanced material</u> for functional structure application of dual-coolant


liquid metal breed system (DEMO-TBM) ✓ <u>T handling technologies</u> which form the technical basis of safety and T breeding

Highlight : DEMO plant concept related to tritium handling in the primary coolant system is developed

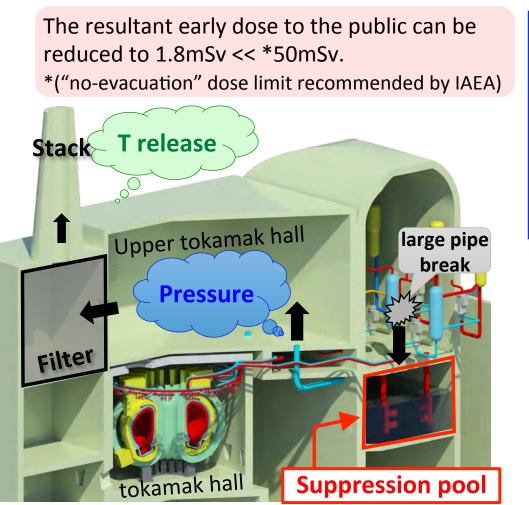
T permeation into water can be resolved in DEMO

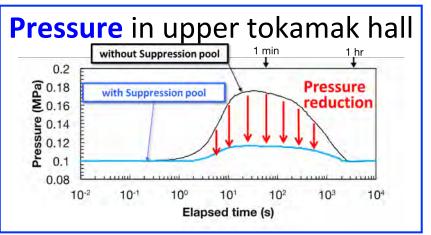
Tritium permeation was estimated for three pathways via: 1) blanket surface,
2) inside blanket, and 3) divertor surface.

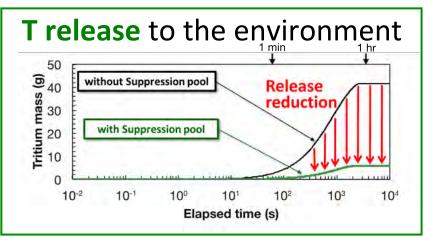
 Tritium permeation was estimated to be as low as 5.7 gT/day at most.

(K. Katayama et al, Estimation of Tritium Permeation Rate to Cooling Water in Fusion DEMO Condition, 4B-6, Tritium 2016, US)

- For the permeation of 5.7 gT/day, T concentration in the coolant can be kept at 1 TBq/kg or lower by applying an existing water detritiation system (WDS) of CANDU.
- Actually, the required water to be processed is 94 kg/h for DEMO, which is satisfied with the specifications WDS in Wolsong (Korea).




Water throughput: 100 kg/h T concentration: 0.04 – 2.2 TBq/kg


A new concept of T confinement in ex-VV LOCA

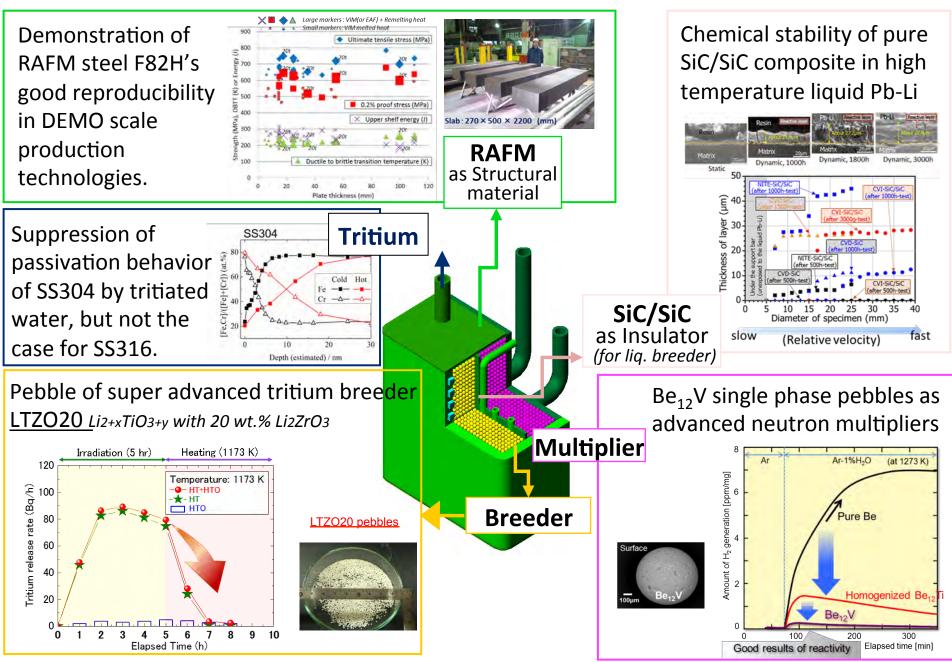
(Y. Someya et al., FEC2016 SEE/P7-5)

- ✓ Ex-VV LOCA discharges the tritiated coolant (1TBq/kg) in the final confinement barrier.
- ✓ Installation of a Suppression Pool (SP) is proposed to mitigate the pressure increase in the Upper Tokamak Hall (UTH), constituting the final barrier.
- \checkmark The SP can reduce the pressure in the UTH to less than 0.12 MPa.
- ✓ The resultant release of tritium from UTH can be drastically reduced.

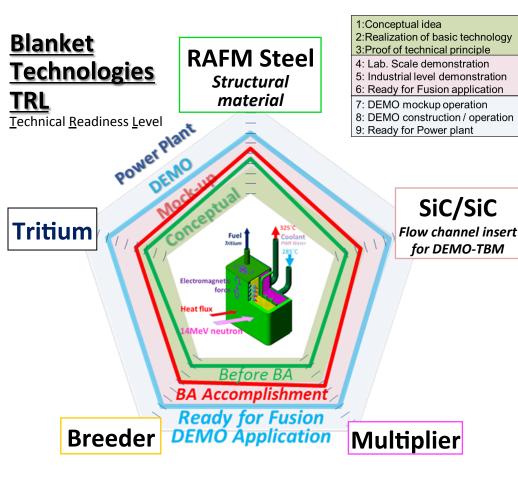
Requirement for the blanket system

Expected performance

Assure safety and reliability

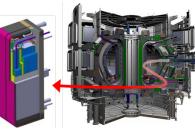

throughout the assumed service

period under the assumed operation


Required function

- Shield the high energy fusion neutron
- Breed Tritium (TBR > 1.05)
- mode. RAFM Convert neutron energy into heat as Structural Reduce radioactive level which is material consistent with waste management 325°C and recycle strategy. Tritium • Ensure maintenance and inspection 285°C service are feasible. SiC/SiC as Insulator Electromagneti (for lig. breeder) forc Multiplier **Heat flux 14MeV** neutron **Breeder**
 - ★ Materials & Tritium technology development for blanket system is expected to provide sound engineering bases for safety, reliability and feasibility of blanket designs.

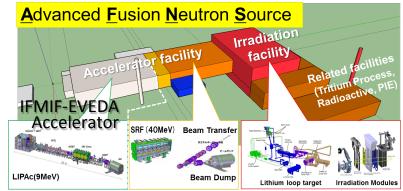
The highlights of the accomplishment of DEMO R&D



Strategy toward DEMO beyond BA activity

To get ready for Fusion DEMO application.

Demonstration and endorsement of these developed technologies in industrial level, <u>under DT fusion in-vessel environment.</u>


Operation of ITER-TBM in DT phase

 The important demonstration to prove its feasibility (But, <3dpa)

An intense fusion neutron source

Relatively large volume, constant / high dose fusion n. irradiation facility

 ✓ Verification of materials and blanket technologies under DEMO-like environment.

Summary

Demo concept development

- ✓ Plant concept related to tritium handling in the primary coolant is developed.
 - Tritium permeation into the coolant in the in-vessel components is evaluated to be 5.7gT/day.
 - T management keeping 1TBq/kg in the primary coolant is found to be possible using the existing tritium removal facility of CAMDU.
 - □ Confinement concept of T release at ex-vessel LOCA is proposed using suppression pool system, resulting early dose to the public 1.8mSv.

Demo R&D activity

- ✓ Five R&D tasks on blanket technologies were conducted in the BA DEMO R&D activity, and the major accomplishments are as follow.
 - Demonstrate **RAFM steel, F82H,** potential as the DEMO structural material
 - □ Prove the stability of <u>SiC/SiC composite</u> for functional structure application
 - Developed **Beryllide (Be₁₂V)** as the advanced neutron multiplier
 - Developed <u>Li-titanete/Li-Ziroconate ceramic</u> as the advanced tritium breeder
 - **Tritium handling technologies**.

Next step

✓ Need an intense fusion neutron source to demonstrate these technologies.