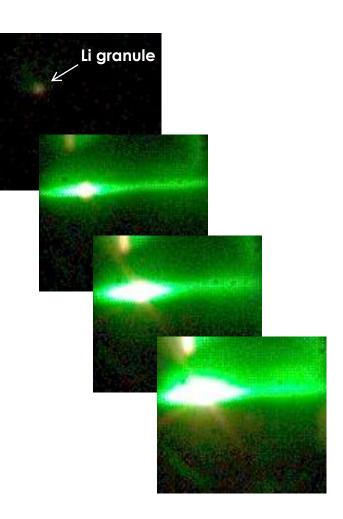
Effectiveness of High-Frequency ELM Pacing with Deuterium and Non-fuel Pellets in DIII-D

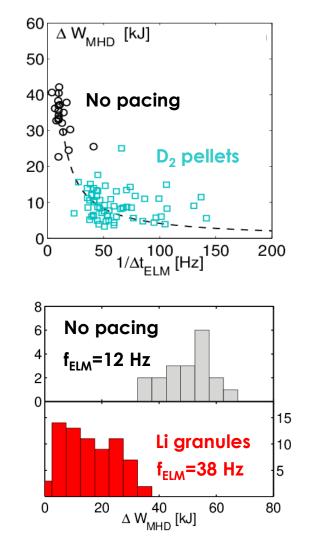

A.Bortolon¹, L.R. Baylor², N.Commaux², R.Maingi¹, D.K.Mansfield¹, A.L.Roquemore¹, R.Lunsford¹, A.Nagy¹, D.Shiraki², M.Vorenkamp¹, I.Bykov³, G.L.Jackson⁴, R.A.Moyer³, T.Osborne⁴, C.J.Lasnier⁵, M.J.Makowski⁵, P.B Parks⁴, R.Groebner⁴, R.Nazikian¹ and the DIII-D team

¹PPPL, ²ORNL, ³UCSD, ⁴GA, ⁵LLNL

Presented at the

26th IAEA Fusion Energy Conference **Kyoto**, **Japan**

October 21st 2016

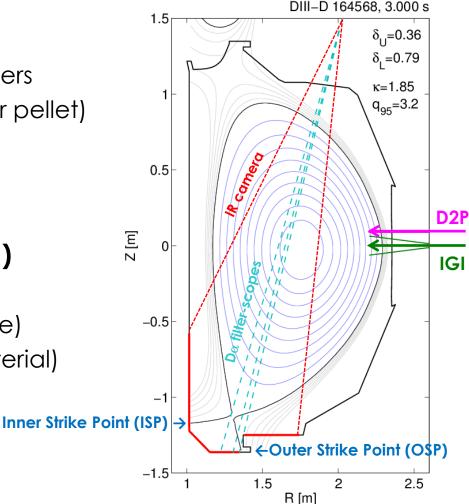

ELM Pacing Obtained with D₂ and Li Pellet Injection in Low-Torque ITER-Baseline Scenario (IBS)

- D₂ pellet injection up to 9X natural f_{ELM} in IBS at applied torque T_{ini} ~0 Nm
 - ELM pacing and mitigation observed

ITER operation at 15MA may need up to 30X reduction of ELM heat flux

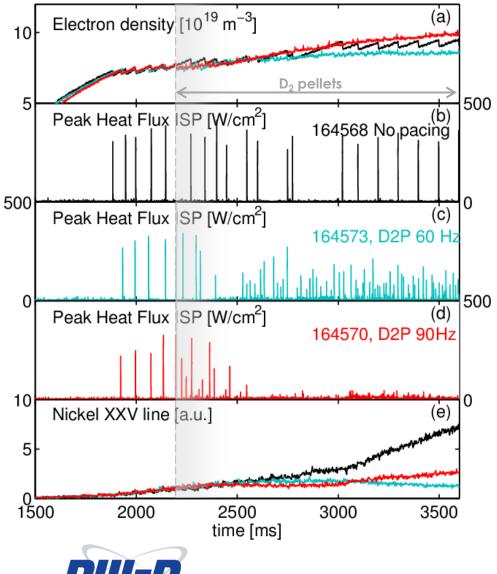
- ELM pacing obtained with non-fuel granule injection (lithium)
 - Effective mitigation at high q_{95} , low n_e
 - Mitigation not achieved in IBS

In ITER, D_2 pellets for ELM control might use up to 40% of total allowed fuel throughput

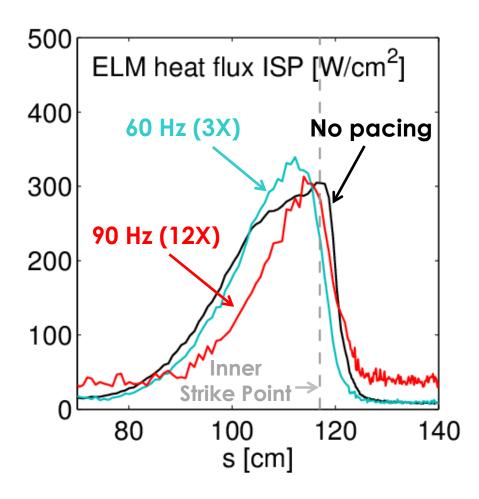


Upgrades of Injection Systems Enable Faster Injection Rates with D₂ and Non-fuel Pellets

• D₂ pellet injector (D2P)

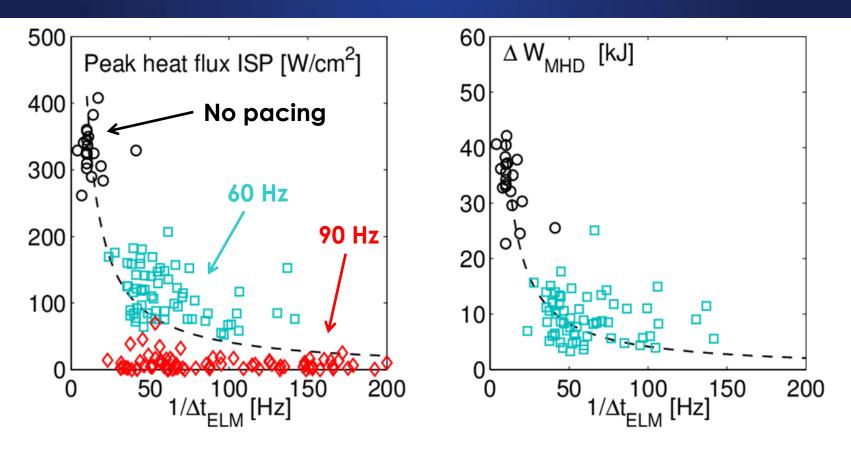

- 3 guns, 90Hz with new extruders
- 1.3×0.9 mm (7x10¹⁹ atoms per pellet)
- Injection speed~100-150 m/s

- Impurity Granule Injector (IGI)
 - Li, C, B₄C, 0.3-1.0 mm
 - Up to 300 Hz (depends on size)
 - 50-150 m/s (depends on material)



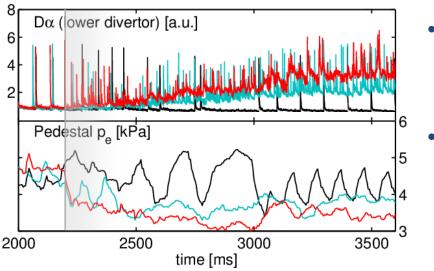
Heat Flux Mitigation Obtained with D₂ Pellets in ITER Baseline Scenario (IBS) at Zero Torque

- β_N=1.7, q₉₅=3.2, T_{inj}~0.0 Nm
- Reference no D2P, f_{ELM}~10 Hz
 q_{peak}~350 W/cm²
- D2P 60 Hz \rightarrow f_{ELM}~60 Hz - q_{peak}~50-100 W/cm²
- D2P 90 Hz \rightarrow f_{ELM}~90Hz - q_{peak} <30 W/cm²
- No Ni accumulation with D2P


Moderate Reduction of ELM Footprint Observed During ELM Mitigation by D₂ Pellet Injection

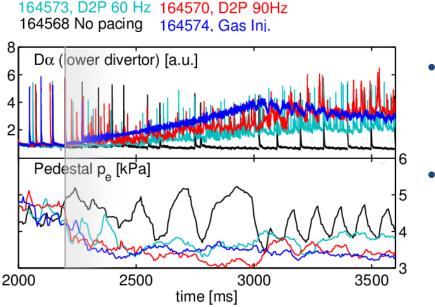
- D2P 60 Hz
 - ELM heat flux footprint width similar to natural ELMs
- D2P 90 Hz Footprint ~20% narrower

Approximate 1/f_{ELM} Scaling of q_{peak} and ΔW_{MHD} Observed



- 60 Hz injection $\rightarrow q_{peak}$, $\Delta W_{MHD} \sim 1/f_{ELM}$ ($f_{ELM} = 1/\Delta t_{ELM}$)
- 90 Hz injection $\rightarrow q_{peak}$ strongly reduced at all frequencies

High Frequency D₂ Injection Reduces Pedestal Pressure



- Increase of $D\alpha$ baseline by D2P
 - Additional fueling from neutrals
 - p_{e,ped} reduced by edge cooling

- At 90 Hz,
$$p_{e,ped} \sim 20-30\%$$
 lower

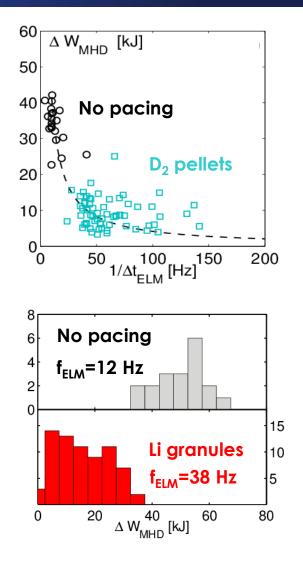
High Frequency D₂ Injection Reduces Pedestal Pressure

- Increase of $D\alpha$ baseline by D2P
 - Additional fueling from neutrals
 - p_{e,ped} reduced by edge cooling
 At 90 Hz, p_{e,ped} ~20-30% lower

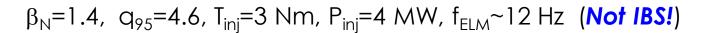
- Similar pedestal parameters with 90Hz D2P and equivalent D₂ gas
 - Discharge free from type-I ELMs

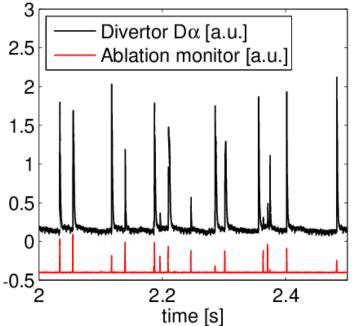
ELM Pacing Obtained with D₂ and Li Pellets, in Low-torque ITER-Baseline Scenario (IBS)

- D₂ pellet injection up to 9X natural f_{ELM} in IBS at applied torque T_{ini} ~0 Nm
 - ELM pacing and mitigation observed


ITER operation at 15MA may need up to 30X reduction of ELM heat flux

- ELM pacing obtained with non-fuel granule injection (lithium)
 - Effective mitigation at high q_{95} , low n_e
 - Mitigation not achieved in IBS


In ITER, D_2 pellets for ELM control might use up to 40% of total allowed fuel throughput



ELM Pacing and Mitigation Demonstrated with Li Granules

 $f_{L} = \frac{100}{0} = \frac{100}{0} = \frac{100}{0} = \frac{100}{1/\Delta t_{ELM}} = \frac{100}{1/\Delta t_{ELM}}$ $f_{L} = \frac{100}{1/\Delta t_{ELM}} = \frac{100}{1/\Delta t_{ELM}} = \frac{1}{1/2}$

700

600

500

400

300

200

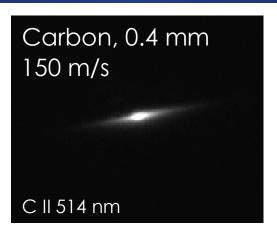
0 V

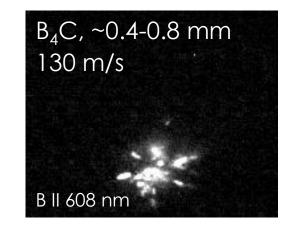
- At ISP, $q_{peak} \ge 1/f_{ELM}$

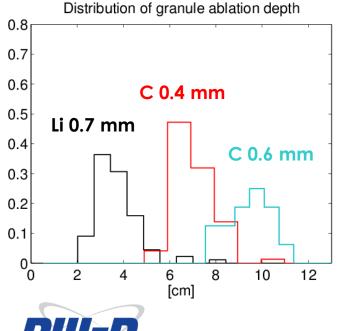
Peak heat flux [W/cm²] (OSP)

160409, no pacing

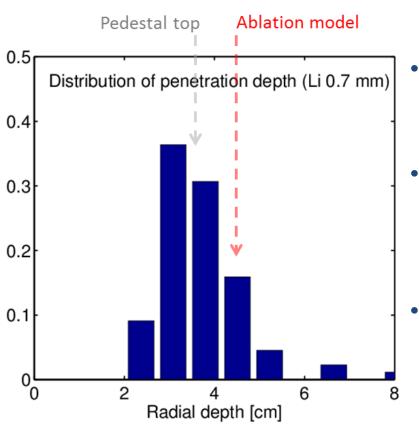
160416, LGI 0.7 mm


Bortolon, NF 2015


- ELM triggering efficiency increases with granule size
 - Pacing f_{ELM}~38 Hz (3X)
 - Transiently f_{ELM}~100 Hz (8X)



Penetration Depth of Different Materials Tested in IBS

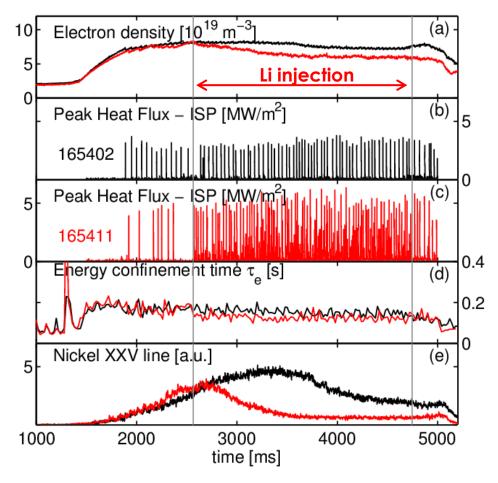


- B₄C tends to shatter at LCFS due to thermal stresses on sharp edges
- C deepest penetration (5-12 cm)
- From measured ablation times and injection velocity, assumed constant

Bortolon / IAEA-FES, Kyoto/ 21 October 2016

NATIONAL FUSION FACILIT

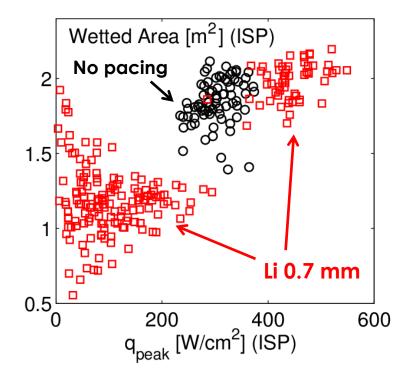
- Most of 0.7mm Li granules reach 3-4 cm inside the LCFS
- New ablation model for Li predicts moderately deeper penetration than observed


Parks. to be submitted

- Pedestal top is 3 cm inside the LCFS
 - MHD simulations find ELM triggered _ when pressure peaks at pedestal top

Futatani. NF 2014

In IBS, Li Granules Effective in Pacing, but not Mitigation


- IBS β_N =1.7, T_{inj}=2.0 Nm, f_{ELM} ~ 25 Hz
- Li 0.7 mm, 100 m/s, 130 Hz
 - f_{ELM}~130 Hz (~5X)
 - Triggering efficiency >85%

Strong density pump-out

- n_e lower by 15% (v^*_{ped} ~3.5→1.3)
- τ_E lower by 10-20%
- Reduction of metals (Ni) in core
- During Li, large ELM remain
 - − f_{LE}~41 Hz (1.6X)
 - $q_{peak,LE} \sim q_{peak}$ before and after Li

Two Classes of Li-Triggered ELMs Observed: Large & Small

- For large ELMs, q_{peak} and wetted area similar to natural ELMs
 - Weakly dependent on Δt_{ELM}
- Li injection changes pedestal structure
 - Lower $n_{e,ped}$, higher $T_{e,ped}$ (dilution) , $\nu^*{}_{ped}$ ~3.5 ${\rightarrow}1.3$

Changes of Pedestal Affect Effectiveness of Mitigation

• ELM pacing and mitigation with D2P obtained in zero-torque IBS

- Up to 6X increase of frequency with mitigation $\sim 1/f_{ELM}$
- At higher f_{inj}, mitigation correlates with lower p_{e,ped} associated with secondary fueling effects

• ELM pacing and mitigation obtained with non-fuel pellets (Li)

– Ablation dynamics of C and $B_4 C$ confirm importance of tailoring deposition profile

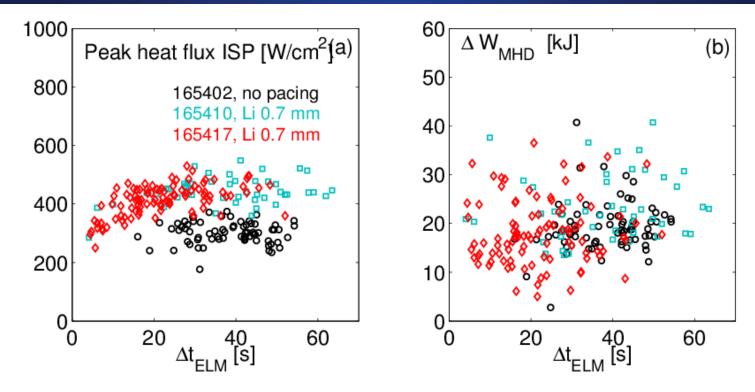
• In IBS, peak heat flux mitigation with Li is challenging

- Possibly associated with reduced v^*_{ped}

Fil, TH/P1-10

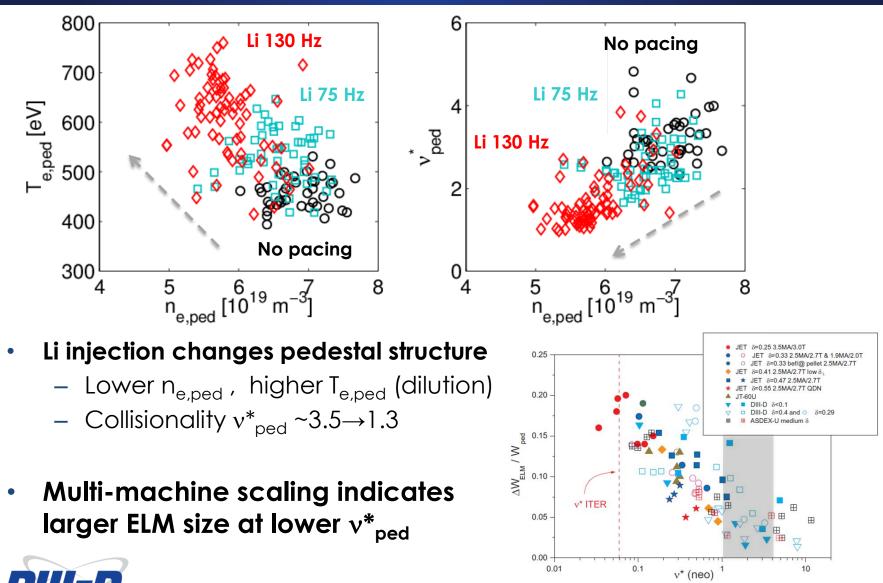
• M3D-C¹ simulations in progress to study conditions for ELM triggering

 Accurate extrapolation to ITER requires predicting changes to pedestal profiles under repetitive pellet injection

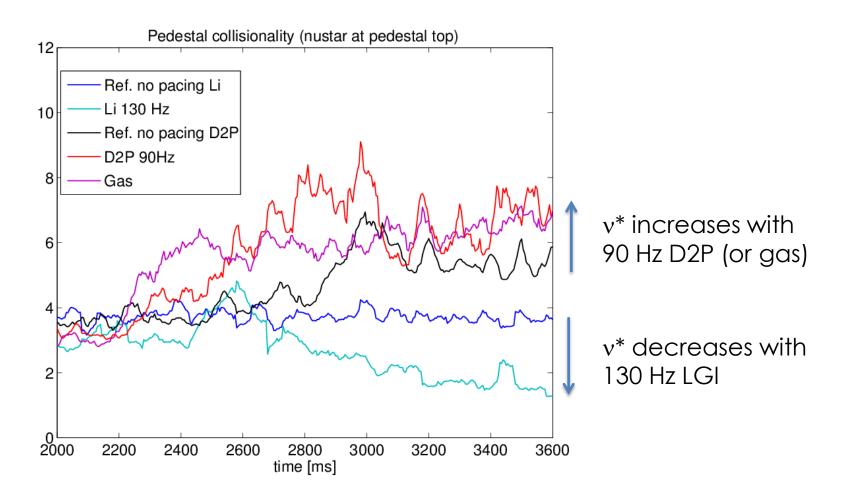


Back up slides

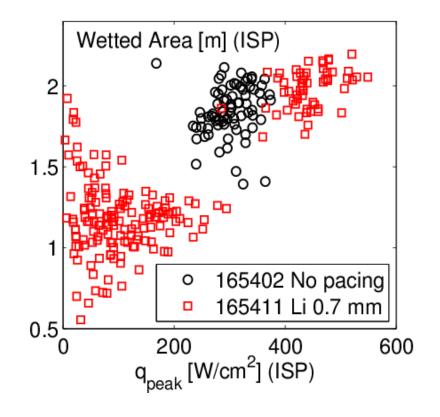
Bortolon / IAEA-FES, Kyoto/ 21 October 2016

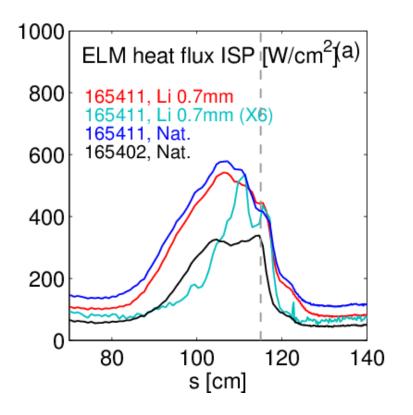

For large ELMs, size depends weakly on pre-ELM period

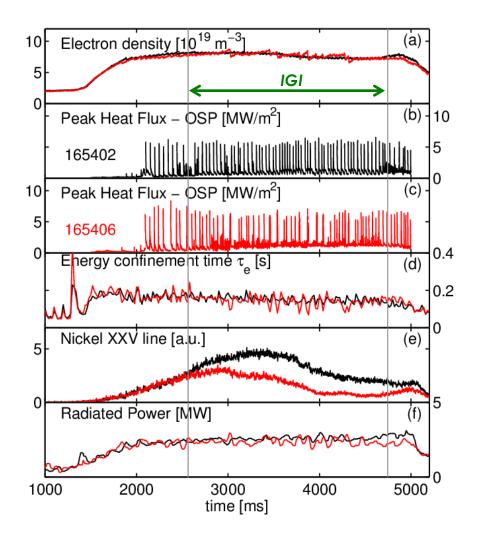
- Small ELMs don't affect significantly pedestal evolution
 - Consider only large ELMs (q_{peak} > 300 W/cm²)
- Small changes in ELM observables, across Δt_{ELM} =5-50 ms



Pedestal changes observed during Li injection can lead to larger ELMs


NATIONAL FUSION FACILIT


High frequency injection of D₂ and Li pellets modifies collisionality in opposite ways


Li-triggered ELMs show broad distribution of q_{peak}

ELM pacing with C spheres achieved, not mitigation

- ITER baseline scenario, q₉₅=3.2
 - β_N =1.7 (feedback controlled)
 - P_{inj}=4-5 MW, T_{inj}=0.6-1.5 N m
 - $-~f_{ELM} \simeq 25~Hz$
 - C sphere injection 2.6-4.8 s
 - 0.4 mm, 130 m/s, 60 Hz
- C injection results in a combination of large and small ELMs
 - Overall triggering efficiency ~50% (including events with q_{peak} >30 W/cm²)
- For larger ELMs, f_{ELM}~10 Hz
 - q_{peak} similar to ref. shot
 - $q_{peak} \sim q_{peak}$ after IGI phase
- Reduction of core Ni
- Similar confinement time τ_{e} and P_{rad}

Table of relevant impurity parameters

	<u>Li</u>	Li	D2	Be	<u>B4C</u>	<u>C glass</u>	<u>B</u>
Sublimation energy (eV)	1.6	1.6	0	3.3	5.3	7.5	5.8
Density [g/cm3]	0.53	0.53	0.2	1.85	2.52	1.5	2.37
Radius [mm]	0.7	0.9	1.49	1	0.5	0.5	0.5
Electrons per granule	<u>2.49E+19</u>	5.30E+19	1.04E+20	2.59E+20	<u>4.67E+19</u>	<u>2.96E+19</u>	<u>4.22E+19</u>
	<u>27.222</u>	57.857	13.226	416.893	<u>107.533</u>	<u>81.770</u>	<u>91.418</u>

• Carbon, B4C, Boron, have higher sublimation energy than Li/D2

- Deeper penetration
- Larger impact on energy balance (might induce H-L back transitions

