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Helical plasmas 

• Helical plasmas are studied for optimization by 
improving MHD stability and neoclassical 
transport. 
– W7-X: optimized against neoclassical transport 

as well as MHD stability. 

– Heliotron J : optimized against MHD stability by 
producing the magnetic well. 

– LHD: better neoclassical transport for the 
inward-shifted configuration, while it has better 
MHD stability for the outward-shifted one. 

• Two strategies for stability 
– Utilizing magnetic shear: LHD, CHS, Heliotron-E 

– Utilizing magnetic well (Mercier well index): W7-
X, Heliotron-J, HSX, TJ-II 

• Recently, optimization against turbulent 
transport becomes a hot topic. 
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Parameters of LHD and  

Heliotron J plasmas 
• The aspect ratio R/a, safety 

factor q, normalized Larmor 
radius, and temperature ratio 
Te/Ti, are similar. On the 
other hand, the normalized 
collision frequency and the 
density gradient length Ln are 
significantly different. 

• The LHD is the inward-shifted 
configuration, and it is the 
magnetic hill with a moderate 
shear. 

• The Heliotron J is the 
magnetic well with a very 
weak shear. 
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Progress of gyro-kinetic 

analysis of turbulent transport 

in helical systems 
• Adiabatic electron simulations  

– LHD:    T.-H. Watanabe Phys. Rev. Lett. (2008) 

                M. Nunami, Phys. Plasmas (2012, 2013) 

– W7-X:  P. Xanthopoulos, Phys. Rev. Lett. (2007) 

                P. Xanthopoulos, Phys. Rev. Lett. (2014) 

– NCSX: H. Mynick, Phys. Rev. Lett. (2010) 

                H. Mynick, Plasma Phys. Cont. Fusion (2014) 

• Kinetic electron simulations 
– Enable us to evaluate particle and electron heat 

fluxes. 

– Trapped electron effects enhance the growth rate of 
ITG mode. 

– HSX: B. J. Faber, Phys. Plasmas (2015) 

– LHD: A. Ishizawa, Nuclear Fusion (2013, 2015) 

             A. Ishizawa, Phys. Plasmas (2014) 

             A. Ishizawa, J. Plasma Phys. (2015) 

• This conference 
– TH/P2-3, M. Nunami 

– TH/P4-10 D. Spong  

• We use GKV code (Local flux tube code). 5 

Xanthopoulos, PRL 2014 

Ishizawa, JPP 2015 



LHD discharge #88343 
• B=2.75T, R=3.6m 

• Low-Ti phase: Ti=1.6keV t=1.8s 

• High-Ti phase: Ti=3.9keV  t=2.2s 
– Beta(r/a=0.65)=0.3% 

– Collision: 1/ν regime 
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Kinetic electron effects enhance ITG mode 

• ETG modes are unstable at high wavenumber. 
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• Ion temperature gradient (ITG) modes are unstable. 

• Kinetic electron (KE) effects enhance the ITG mode. 

 

LHD-H 

LHD-L 
KE: Kinetic electron,  

AE: Adiabatic electron 
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• The energy fluxes are in good agreement with experimental results at 
rho>0.7 in the low-Ti phase (LHD-L, Ti=1.6keV). 

• The electron energy flux is in good agreement with experimental results in 
the high-Ti phase (LHD-H, Ti=3.9keV). 

• Prediction of temperature gradient length by flux matching has 20% error.  

• There is no short-fall problem, which suffers GK analysis of some 
tokamaks. 8 

LHD-H 

LHD

-L 

Symbols are from the 

simulations, and curves 

are from the experiments. 

Ion and electron energy fluxes due to turbulence, Qi and Qe.  

Importance of kinetic electrons in validation 
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Turbulence in Heliotron J 

HJ-ST: standard configuration 

HJ-HB: High-bumpiness (high-mirror ratio) 

HJ-ST 



HJ plasmas are unstable against 

ITG mode 

• HJ plasma is unstable at higher wavenumber 
regime than LHD. 

• Mixing length estimation predicts lower 
transport in HJ than LHD. 10 

Linear growth rate Mixing length estimated transport 
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Elongated mode structure in HJ 
• The mode structure is elongated along the field line in HJ. 

• That is due to the weak shear and clearly seen in the profile of 

• The stabilizing effect of shear is confirmed by the reduction of 
growth rate by increasing the shear. 
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High mirror-ratio reduces turbulent transport 
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• High mirror-ratio (HJ-HB) 
reduces ITG mode, and 
thus suppresses 
turbulent transport. 

• Qualitatively consistent 
with the experimental 
observation. 

S. Kobayashi, IAEA-FEC 2008 

Heliotron J Standard (HJ-ST) High mirror-ratio (HJ-HB) 

Growth rate 0.40 0.26 

Heat transport ci, ce 5.9,  2.4  [GB] 4.2,  1.7  [GB] 

2.5  [GB] 1.7  [GB] 

Experimental observation in Heliotron J 
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Turbulent transport and zonal flows 

• The neoclassical optimization 
(high-bumpiness) improves 
turbulent transport in Heliotron J.  

• Weak magnetic shear of 
Heliotron J does not lead to high 
turbulent transport. 

• Zonal flow in HJ is stronger than 
LHD. 13 
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Strong zonal flow in Heliotron J 
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ei,c
• LHD 

–      in LHD-L is smaller than LHD-H, while           in LHD-L is larger than LHD-H. 
This is explained by more inward shifted axis and larger       in LHD-L. 

• Heliotron J  
–     in HJ-HB is smaller than HJ-ST, which is explained by smaller          in HJ-

HB. 

• Zonal flow relaxation time and the residual level do not explain the strong 
zonal flow in HJ. 

• The strong zonal flow is expected to be produced by nonlinear interaction. 

ei,c
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Summary 
• We have investigated turbulent transport in helical 

systems, LHD and Heliotron J, by gyrokinetic simulations. 

• LHD (Validation) 
– Including kinetic electrons is crucial for the validation. 

– There is no short-fall problem near the edge. 

– The inward-shifted magnetic axis of LHD-L leads to smaller 
turbulent transport than LHD-H in GB unit because of longer 
zonal flow relaxation time. 

• Heliotron J 
– High mirror ratio (neoclassical optimization) reduces turbulent 

heat transport. 

• In this comparison of those typical cases, turbulent 
transport in HJ is lower than that of LHD in GB unit. 
Lower mixing-length estimated transport and higher 
amplitude of zonal flows can be the mechanism. 

• Strong zonal flow in HJ can be produced by elongated 
mode structure of ITG due to weak shear. 15 



Additional slides 
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Profiles along the field line 

 



Turbulent particle flux 
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High-Ti 

Low-Ti;  Ion root 

High-Ti;  Electron root                 
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