

Multi-machine analysis of turbulent transport in helical systems via gyrokinetic simulation

A. Ishizawa, Y. Nakamura, Y. Kishimoto, *T.-H. Watanabe, **H. Sugama, **K. Tanaka, S. Kobayashi, K. Nagasaki Kyoto University, *Nagoya University, **NIFS

IAEA-FEC, Kyoto, Oct. 21, 2016

Outline

- Introduction
- Turbulent transport in Large Helical Device (LHD)
- Turbulent transport in Heliotron J (HJ)
- Comparison of helical systems
- Summary

W7-X

HSX

D. Spong,

- Helical plasmas are studied for optimization by improving MHD stability and neoclassical transport.
 - W7-X: optimized against neoclassical transport as well as MHD stability.
 - Heliotron J : optimized against MHD stability by producing the magnetic well.
 - LHD: better neoclassical transport for the inward-shifted configuration, while it has better MHD stability for the outward-shifted one.
- Two strategies for stability

LHD

- Utilizing magnetic shear: LHD, CHS, Heliotron-E
- Utilizing magnetic well (Mercier well index): W7-X, Heliotron-J, HSX, TJ-II
- Recently, optimization against turbulent transport becomes a hot topic.

Heliotron J

Parameters of LHD and Heliotron J plasmas

- The aspect ratio R/a, safety factor q, normalized Larmor radius, and temperature ratio Te/Ti, are similar. On the other hand, the normalized collision frequency and the density gradient length Ln are significantly different.
- The LHD is the inward-shifted configuration, and it is the magnetic hill with a moderate shear.
- The Heliotron J is the magnetic well with a very weak shear.

	LHD-L	HJ-ST
R_0/a	6.2	7.3
$\rho = r/a$	0.68	0.5
q	1.5	1.7
$ ho_{*}[10^{-3}]$	2.	4.5
V_i^*	0.083	3.2
β [%]	0.2	0.05
T_e/T_i	0.96	1.3
R_0/L_n	2.7	9.3
R_0/L_{Ti}	8.7	13.
R_0/L_{Te}	9.1	17.
\hat{s}	1.2	0.023
$D_{ m well}$	-0.01	0.74

Progress of gyro-kinetic analysis of turbulent transport in helical systems

- Adiabatic electron simulations
 - LHD: T.-H. Watanabe Phys. Rev. Lett. (2008)
 M. Nunami, Phys. Plasmas (2012, 2013)
 - W7-X: P. Xanthopoulos, Phys. Rev. Lett. (2007)
 - P. Xanthopoulos, Phys. Rev. Lett. (2014)
 - NCSX: H. Mynick, Phys. Rev. Lett. (2010)
 - H. Mynick, Plasma Phys. Cont. Fusion (2014)²⁵
- Kinetic electron simulations
 - Enable us to evaluate particle and electron heat fluxes.
 - Trapped electron effects enhance the growth rate of ITG mode.
 - HSX: B. J. Faber, Phys. Plasmas (2015)
 - LHD: A. Ishizawa, Nuclear Fusion (2013, 2015)
 - A. Ishizawa, Phys. Plasmas (2014)
 - A. Ishizawa, J. Plasma Phys. (2015)
- This conference
 - TH/P2-3, M. Nunami
 - TH/P4-10 D. Spong
- We use GKV code (Local flux tube code).

45 -

5 💼

Xanthopoulos, PRL 2014

LHD discharge #88343

B=2.75T, R=3.6m

NBI Power (MW)

 $m_{e_{bar}}^{m}(x10^{19}m^{-3})$

0

1.6

1.8

15

10 Perp. P-NB

- Low-Ti phase: Ti=1.6keV t=1.8s
- High-Ti phase: Ti=3.9keV t=2.2s

Para. N-NB

Γ.(0)

(a)

5

(keV

- Beta(r/a=0.65)=0.3%
- Collision: 1/v regime

Kinetic electron effects enhance ITG mode

- Ion temperature gradient (ITG) modes are unstable.
- Kinetic electron (KE) effects enhance the ITG mode.
 - ETG modes are unstable at high wavenumber.

Importance of kinetic electrons in validation

- The energy fluxes are in good agreement with experimental results at rho>0.7 in the low-Ti phase (LHD-L, Ti=1.6keV).
- The electron energy flux is in good agreement with experimental results in the high-Ti phase (LHD-H, Ti=3.9keV).
- Prediction of temperature gradient length by flux matching has 20% error.
- There is no short-fall problem, which suffers GK analysis of some tokamaks.

Turbulence in Heliotron J

HJ plasmas are unstable against ITG mode

- HJ plasma is unstable at higher wavenumber regime than LHD.
- Mixing length estimation predicts lower transport in HJ than LHD.

Elongated mode structure in HJ

- The mode structure is elongated along the field line in HJ.
- That is due to the weak shear and clearly seen in the profile of k_{\perp}^2
- The stabilizing effect of shear is confirmed by the reduction of growth rate by increasing the shear.

High mirror-ratio reduces turbulent transport

Heliotron J	Standard (HJ-ST)	High mirror-ratio (HJ-HB)
Growth rate γ	0.40	0.26
Heat transport χi, χe	5.9, 2.4 [GB]	4.2, 1.7 [GB]
γ / k_{\perp}^2	2.5 [GB]	1.7 [GB]

- High mirror-ratio (HJ-HB) reduces ITG mode, and thus suppresses turbulent transport.
- Qualitatively consistent with the experimental observation.

Turbulent transport and zonal flows

- The neoclassical optimization (high-bumpiness) improves turbulent transport in Heliotron J.
- Weak magnetic shear of Heliotron J does not lead to high turbulent transport.
- Zonal flow in HJ is stronger than LHD.

	LHD-L	HJ-ST
Instability	ITG	ITG
$\gamma \left[v_{Ti}/R_0 ight]$	0.27	0.4
$R_0/L_T - R_0/L_{T \text{crit}}$	2.6	5.2
$\chi_i \left[v_{Ti} \rho_{Ti}^2 / R_0 \right]$	11.	5.9
$\chi_e \left[v_{Ti} ho_{Ti}^2 / R_0 ight]$	4.8	2.4

Strong zonal flow in Heliotron J

- LHD
 - $\chi_{i,e}$ in LHD-L is smaller than LHD-H, while γ / k_{\perp}^2 in LHD-L is larger than LHD-H. This is explained by more inward shifted axis and larger τ_{zF} in LHD-L.
- Heliotron J
 - $-\chi_{i,e}$ in HJ-HB is smaller than HJ-ST, which is explained by smaller γ / k_{\perp}^2 in HJ-HB.
- Zonal flow relaxation time and the residual level do not explain the strong zonal flow in HJ.
- The strong zonal flow is expected to be produced by nonlinear interaction.

Summary

- We have investigated turbulent transport in helical systems, LHD and Heliotron J, by gyrokinetic simulations.
- LHD (Validation)
 - Including kinetic electrons is crucial for the validation.
 - There is no short-fall problem near the edge.
 - The inward-shifted magnetic axis of LHD-L leads to smaller turbulent transport than LHD-H in GB unit because of longer zonal flow relaxation time.
- Heliotron J
 - High mirror ratio (neoclassical optimization) reduces turbulent heat transport.
- In this comparison of those typical cases, turbulent transport in HJ is lower than that of LHD in GB unit. Lower mixing-length estimated transport and higher amplitude of zonal flows can be the mechanism.
- Strong zonal flow in HJ can be produced by elongated mode structure of ITG due to weak shear.

Additional slides

Profiles along the field line

Turbulent particle flux

