

Multi-machine analysis of turbulent transport in helical systems via gyrokinetic simulation

A. Ishizawa, Y. Nakamura, Y. Kishimoto, T.-H. Watanabe, H. Sugama, K. Tanaka, S.Kobayashi, K. Nagasaki

Ļ	
1 ⊕	LHD-H ———————————————————————————————————
	along the field line 0 z $[\pi]$ 2 4

	LHD-L	HJ-ST
ŝ	1.2	0.023
$D_{ m well}$	-0.01	0.74
Instability	ITG	ITG
$\gamma \left[v_{Ti}/R_0 \right]$	0.27	0.4
$\chi_i \left[v_{Ti} \rho_{Ti}^2 / R_0 \right]$	11.	5.9
$\chi_e \left[v_{Ti} \rho_{Ti}^2 / R_0 \right]$	4.8	2.4

- The neoclassical optimization suppresses turbulent heat transport in LHD and in Heliotron J.
- Turbulent transport in HJ is lower than that in LHD in GB unit. Lower mixing-length estimate and higher amplitude of zonal flows can be the mechanism.
- Heliotron J has more elongated mode structure than LHD along the field line.