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Abstract:

A Large Eddy Simulation (LES) approach of full-3D extended magnetohydrodynamic (MHD)
equations is introduced to enable studying nonlinear growth of ballooning modes in a
heliotron-type device over a wide range of parameter space as easily as possible. A model
to substitute influences of the scales smaller than the grid size, Sub-Grid-Scale (SGS), on
the scales larger than the computational Grid Scale (GS) is developed. An LES of two-
fluid MHD equations with the SGS models successfully reproduces growth of the ballooning
modes and nonlinear saturation, showing usefulness of the LES approach to study the in-
stability in a heliotron device with a small computational cost.

1 Introduction

Physics of mild saturation of ballooning and interchange modes has been studied as one
of the essential subjects for a heliotron device[1, 2, 3, 4]. While linear stability analysis
predicts emergence of ballooning/interchange instability for the magnetic axis position
Rax = 3.6m of the Large Helical Device (LHD), a high β-value of about 5.1% has been
achieved in LHD experiments. Because MHD activity is observed during discharges, it
has been considered that linearly unstable modes grow but the growth is saturated mildly.
Since understanding physics of mild saturation has been an important issue in order to
achieve a higher β, some numerical works have been devoted to clarify the mechanics of the
mild saturation. Though it has been shown by a 3D MHD simulation that the instabilities
can be saturated mildly when a large viscosity µ is adopted[3], it is difficult to justify
the large value. Pressure flattening, fluid compressibility, parallel heat conductivity and
parallel flow generations can also help the mild saturation in full 3D simulations[1, 3, 5].
However, it has been also shown by full-3D compressible MHD simulations by the use
of the MHD In the Non-Orthogonal System (MINOS) code in Ref.[1] that the pressure
can be collapsed even with the help of these candidates. Numerical simulations by the
use of another full-3D numerical code, MIPS[6], have also shown that the pressure can be
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collapsed when unstable ballooning modes grow.[2] It is now argued that micro-physics
such as two-fluid effects (such as diamagnetic flow) and the gyro-viscosity and flow shear
effects can suppress the instability.

A two-fluid 3D numerical simulation is an important tool to clarify the mechanism
of the mild saturation. Since we pay much attention on nonlinear dynamics together
with relatively large amplitude of magnetic and pressure fluctuations, we retain both
two-fluid (Hall) and gyro-viscous terms explicitly into the simulations. A difficulty in
such a strongly nonlinear simulation is that scales which are not resolved in a simulation
can be important through nonlinear couplings, while very fine simulations suffer from
existence of whistler waves and small-scale activities such as secondary Kelvin-Helmholtz-
like instability as has been reported in Ref.[7]. Since the artificial truncation of the small
scales often contaminates and ruins nonlinear dynamics of GS modes[4, 7], it is required
to compensate the influences of the unresolved scales by a SGS model. In this paper we
focus on influences of the unresolved scales in a two-fluid simulation and develop a SGS
model. Recently we have shown that a SGS model in Ref.[8] can be applicable to two-fluid
(Hall) MHD turbulence[9], based on our earlier numerical simulations[4]. Here the SGS
model is applied for ballooning simulations.

2 Extended MHD equations in the grid scale and

SGS models

In the MINOS code, the 3D extended MHD equations
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are expressed in the helical-toroidal coordinate system (u1, u2, u3)[3]. The variables ρ, p,
ui, bi are the mass density, the pressure, the i-th components of the velocity field and the
magnetic field vectors, respectively. The symbol Γ denotes the ratio of the specific heats.
Plasma is assumed to be an ideal gas: p = ρT where T is the temperature. The subscripts
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‖, ⊥, and ∧ represents the direction parallel, normal, and binormal to the magnetic field
lines, respectively. Equations (1)-(5) are already normalized by representative quantities;
the mass density ρ0, the horizontal width of the vertically-elongated poloidal cross-section
2L0, the mean toroidal magnetic field B0, the vacuum permeability µ0, the Alfvén velocity
VA =

√
B2

0
/µ0ρ0, and the Alfvén time unit τA = Rc/VA where Rc is the major radius of

the center of the helical coils. The viscous stress tensor Πij (the viscosity µ is included in
it) and the three components of the heat conductivity κ⊥, κ∧, and κ‖ are also normalized
by the typical quantities whereas they are given originally in the dimensional form in
Braginskii[10] and later in Schnack[11]. In the MINOS code, the spatial derivatives are
approximated by the 8th order compact finite difference scheme[12]. The Runge-Kutta-
Gill scheme is adopted for the time evolution.

For the purpose of carrying out LESes of the compressible system (1)-(7), the Favre
filter is introduced as ũ := ρu/ρ, where · indicates a low-pass filter, the cut-off wave
number of which is often the same as or comparable to the grid width of a simulation.
By the use of the Favre filter and the low-pass filter, the GS components of eqs.(1)-(7)
are expressed as
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where new variables τij, Φi, and EM
i represents the difference of influences of the SGS

components on the GS components,
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ρũiũj − bibj

)
+

1

2
bkbkδij

]
, (15)

∂Φk

∂xk
= −

(
uk

∂p

∂xk
+ Γp

∂uk
∂xk

)
+

(
ũk
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See Garnier et al.[17] for alternative expressions of GS equations for compressible fluids.
Here we introduce SGS models for τij , Φi and E

M
i based on earlier studies[8, 4, 9] as
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By the use of this quantity, The SGS viscosity, heat conductivity and the resistivity can
be expressed as νSGS = CνµSGS, κSGS = CκµSGS, and ηSGS = CηµSGS, where
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Here ∆ = (∆x1∆x2∆x3)
1/3, Sij and J i are the mean computational grid width, the rate of

strain tensor and the current density in the grid scale, respectively[8, 9]. This type of SGS
model, Smagorinsky model, has long been used for LESes of both hydrodynamic and MHD
turbulence. While a Smagorinsky-type model is often used for homogeneous turbulence,
it has also been applied successfully for anisotropic and inhomogeneous systems including
Rayleigh-Taylor instability[13] and RFP plasmas[14]. However, since J i includes the
equilibrium component Jequil

i , it can contaminate linear growth of unstable modes. In
order to avoid the contamination, we modify the model as
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While µSGS = µb
SGS can be more suitable than µSGS = µa

SGS in the context of an LES
theory, we show in this paper only the results on µSGS = µa

SGS because of the restriction
of pages. Whether we use µSGS = µa

SGS or µSGS = µb
SGS, the Smagorinsky constants

Cν , Cκ, Cη and an empirical constant CD are to be determined by calibration to either
precise numerical data or experimental data. We also note that applicability of the models
has been examined on homogeneous Hall MHD and single-fluid MHD turbulence under
a uniform magnetic field[9]. Our current understanding is that the model can be more
suitable for two-fluid MHD model including the Hall term than for single-fluid MHD
model. This is another, collateral reason why we study two-fluid SGS model than single-
fluid SGS model here.
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3 Estimation of the SGS viscosity based on better-

resolved simulations

Firstly, we estimate how much the SGS terms can contribute to a mild saturation of
unstable modes by making use of our earlier numerical data. Time evolution of µSGS in
eq.(21) by the use of numerical data in Ref.[1] is plotted in Fig.1(a), and isosurfaces of µ
at a time of nonlinear saturation is shown in Fig.1(b) for Cν = Cη = 0.046 according to
Ref.[8] for incompressible channel MHD turbulence. It has been set µ = κ = η = 1×10−6

and number of grid points 193 × 193 × 640 in the reference simulation in Ref.[1] and
µ = 5 × 10−4, κ = η = 1 × 10−6 for the same resolution in Ref.[15]. We recall here
that growth of unstable mode in the latter computation is mildly saturated and that
well-formed magnetic surfaces are recovered autonomously after the saturation. Since the
maximum value of the SGS viscosity in Fig.1(a) is larger than µ = 5×10−4, it is expected
that the introduction of the SGS viscosity suppress the saturation level of the instability
considerably, although it is also considered that a mild saturation of the instability cannot
be achieved only by the introduction of the SGS effects because unstable modes can grow
linearly before the SGS effects begin to work.

µ=5× 10−4
(viscosity for

(saturation in [3])
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FIG. 1: (a) Time evolution of mean (solid) and the maximum (dotted) values of the SGS
viscosity estimated from nonlinear MHD simulation of ballooning modes of LHD. (b) Isosurface
of µ defined in eq.(21) in a nonlinear simulation.

Next we carry out LESes of ballooning modes with a smaller number of grid points
97×97×640 and a coarser time step width. In Fig.2, time evolution of the energy of each
toroidal mode n of (a) parallel and (b) normal components of the velocity obtained by an
LES of Cν = Cκ = Cη = 0.046 is shown. In Fig.2 the power spectra grow exponentially in
the beginning of the time evolution, indicating that the linear regime is not contaminated
by the introduction of the SGS models. Though the growth rate is the largest in n = 1,
being contradicting with a nature of ballooning modes, it is the consequence of a large
κ‖ = 1×10−1, not of SGS effects. In fact, a simulation with a higher numerical resolution
in Ref.[1] also show that the growth rate of the unstable modes is the largest for n = 1, in
which κ‖ = 1×10−2. It is also noteworthy that the parallel component is quite larger than
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the normal component. These results show that our LES reproduces qualitative natures
in ballooning modes of LHD with a higher numerical resolution in Ref.[1].
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FIG. 2: Time evolution of the energy of each toroidal mode n of (a) parallel and (b) normal
components of the velocity obtained by an LES of Cν = Cκ = Cη = 0.046.

In Fig.3, the m = 0, n = 0 component of the pressure is plotted as the function
of the initial magnetic flux function

√
ψ. Fig.3(a) is for an LES of (a) Cν = Cκ =

Cη = 0.046, and Fig.3(b) is for an LES of (b) Cν = Cκ = Cη = 0.46. Both of the two
runs give a nonlinear saturation even though the numerical resolution is not very fine.
Note that a numerical simulation ends in a numerical explosion without the SGS terms
for this numerical resolution. Note also that computational cost is about 1/32 or less
than the earlier computations reported in Ref.[4] in which the number of grid points is
193×193×640 and a strong numerical filter is applied to eliminate very fine (both in time
and space) motions. While Fig.3(a) gives a more deteriorated profile than that in a two-
fluid simulation in Ref.[4] with respect to a saturated P00, the set of the SGS coefficients
in (b) gives a better result than both (a) and that in Ref.[4]. These numerical results give
an evidence that the LES approach can compensate a lack of numerical resolution in a
simulation reasonably and enable a smaller and a quicker numerical simulation, although
we have to keep in mind that the SGS coefficients should be calibrated more carefully.

4 Concluding Remarks

In summary, we have developed SGS models suitable for two-fluid/extended MHD
equations. Our LESes achieve a nonlinear saturation of ballooning modes by a coarse
numerical resolution without contaminating linear growth of unstable modes upto mod-
erate wave number. The LES approach enables a drastic reduction of the computational
cost and a better representation of dynamics in two-fluid simulations of strong ballooning
modes without damping the modes excessively, and thus provides much easier access to
study of saturation mechanism of unstable modes in LHD, although we need calibrations
of Smagorinsky constants for very precise numerical computations and experiments (val-
idation). We remark that the existence of the two-fluid term in the induction law of the
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FIG. 3: The mean pressure profile Pm=0,n=0(
√
ψ) in two LESes: (a) Cν = Cκ = Cη =

0.046, and (b) Cν = Cκ = Cη = 0.46.

extended MHD equations can be essential because the two-fluid term is quadratic on the
magnetic field, enhancing the forward energy transfer from a large scale to small scale in
the wave number space, and enable replacing a part of the sub-grid-scale effects by the
Smagorinsky-type models.
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