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- Background and purpose of this study 

- Experimental Setup 

- High-beta experiments 

   - Global properties of high-beta operations in low-collisional regime 

        - Characteristics of high-beta discharges 

             - Multi-pellet operations 

             - Quasi-steady state operations with improvement of particle 
confinement 

-    Summary 

 Outline 
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 Strategy of  high beta experiments 

  <b> of 5.1 % was achieved in previous experiments 

  → verify an ability in high beta plasma production in currentless plasmas 

Goal: <b> ~ 4 % at 1T 
（Final goal of LHD: 5 % at 1T） 

Physics Studies 
Stability, Plasma confinement in ergodic 
regime, magnetic island dynamics, 
transport caused by turbulence etc. 

⇒high T and high b plasma is required 
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→ Extension of database of non-dimensional 
parameters （b, S, n*, r*）  
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 Experiments have been done 

since 1998 

 All coils are superconductive. 

 10 pairs of RMP coils 

Specification: 

     R = 3.5 ~ 4.1 m,  a ~ 0.65 m 

     Maximum Bt ~ 3 T 

Heating Power: 

       N-NBI      15 MW  

       P-NBI (perp.)  10 MW 

       ICRF    < 3 MW 

       ECH     ~ 2 MW 

 Large Helical Device (LHD) 
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 Rax is a key parameter for high-beta 
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Rax
v (Magnetic axis in vacuum) is important for 

optimizing characteristics of MHD, transport 

and heating. 

Shift 

Stability: 

Rax 

Equilibrium: 

hill well 

weak dependence 

Transport: 
Increment of helical ripple 

Heating: 
Prompt loss of NB 

Confinement: 

(Experiment) 

Shafranov shift deteriorates transport and 

heating efficiency, although it is valid for stability 

Shafranov shift 

Inward outward 

Rax
v (m) 
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 Rax
v scan experiments for high-beta 

- Rax
v scan experiments were done in condition with constant heating power 

and electron density 

- Core instabilities were excited in the configuration with Rax
v < 3.55 m 

    ⇒Rax
v of 3.56 m was selected 

Rax
v scan with ne constant Optimum Rax

v for pellet and 
gas-puff 
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Unstable 

Bt = -1 T Bt = -1 T 
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 <b> of  4.1% was successfully achieved 

 Multi-pellet injections (Maximum beta) 

 ⇒4.1 %（Te0 = 0.9 keV, ne0 = 6×1019 m-3)   

 Gas puff (Quasi-steady state) 

 ⇒3.4 %（Te0 = 1.2 keV, ne0 = 3×1019 m-3)   

Rax
v = 3.56 m, Bt = -1T, Ap = 5.8 

High beta operation has been extended to low collisional regime 
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  Low-n instabilities are suppressed with  

  the increase in S 

 The amplitude of low-n modes depend on the beta and magnetic Reynolds 
number, S, which is consistent with prediction of linear theory. 

 Results of low-n* (high-S) experiments emphasize the obtained knowledge. 

Increase in S suppresses the amplitude of low-n mode 
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Previous exp. 

Based on [Sakakibara PPCF2008] 
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 Comparison between Pellet and Gas-puff 

Raxv = 3.56 m, Bt = -1T, Ap = 5.8 

Pellet discharge Gas-puff discharge 

Achieved <b> 4.1 % 3.4 % 

Duration time < 0.1 s > 0.5 s (limited by heating) 

Te0 0.9 keV 
(0.2 keV at Bt = 0.425 T) 

 1.2 keV 
(< 0.5 keV at Bt = 0.425 T) 

ne0 6×1019 m-3 3×1019 m-3 

P Profile Peaked profile Broaden profile 

Rax shift ～0.44 m ～ 0.29 m 

Improvement of 
particle 

confinement 

Unclear 
(short duration) 

 

 
Clear 

Stability Core instability Edge instability 

subjects Long time duration Stability control 
Fueling to core 
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  High-beta discharge with pellet injections 

 Pellets were injected in NB and ICRF plasma 

  → Peaked ne and Te profiles were formed 

 Central beta ~ 7% 

 Shafranov shift DR : ~ 0.44 m 
& ICRF 
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  Appearance of  Core MHD mode 

                 - Pellet Discharge -                  

 Peaking of pressure profile leads to 
destabilization of core mode 

  → no profile flattening  

  → Increase in beta can stabilize the 
mode by Shafranov shift? 

 No significant edge instability   
Electron diamag. 

i/2p=0.5 

i/2p=1.0 

i/2p=1.5 

i/2p=2.0 
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  Quasi steady-state high beta discharge  

  with more than 3%    - Gas-puff  - 

Transition phenomenon appears in quasi-steady state operation 

 Strong fluctuation appears ⇒limits the increase in beta 

 Density fluctuation correlates with magnetic one  
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Transition 

12/19 



 Particle flux to divertor reduces  

  after the transition 

 Ion saturation current and density 
reduce after the transition. 

 Ha starts to decrease with IS current 
before transition. 

Ha 

<bdia> 
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  Changes of  plasma profiles  

  before and after transition  

Increment of edge density after the 
transition   [Toi, FST2010] 

 No change of core density 

 Extension of confinement region 

⇒ Magnetic field structure is changed? 
Te ne 
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  Confinement region is extended  

  to the outward 

 Long Lc around i/2p=2 ⇒extension of confinement region 

 New edge MHD instability is excited ⇒ limits the increase in b 

        NBI 
NBI+ICRF 

m/n=1/2 

m/n=2/3 
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   Radial structures of  the modes measured  

   with CO2 interferometer 

Observed modes are localized near edge 

        NBI 
NBI+ICRF 

Transition 

i/2p = 2.0 

i/2p = 1.5 

m/n= 2/3 

m/n = 1/2 
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  Change of  dominant mode with beta  

Resonance of the dominant mode : i/2p=3/2→ 2/1 

No excitation 

dominant 

m/n=2/3 
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        NBI 
NBI+ICRF 

~ 3% 

        NBI 
NBI+ICRF 

~ 3.4% 

Extension of confinement region leads to 
appearance of new resonant surface. 

- Dominant MHD mode is changed from inner 
region to outer one when b is increased.  

  [A.Komori, POP2004] 

dominant 

m/n=2/3 

m/n=1/2 
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  Discussion on  

  Improvement of  particle confinement 

Experimental observation  

- The transition with the spontaneous increase in <b> is found in high-beta 
regime, which is caused by the increase in peripheral electron density 

- After the transition, particle flux to divertor plate is obviously reduced 

- Plasma boundary is shifted to the outward (Thomson scattering) 

-     Edge MHD instabilities are abruptly excited  

Speculations 

- Extension of plasma boundary  

     magnetic field structure with short-Lc is changed to that with long-Lc (HINT2 
calculation) → confinement region is extended → good particle confinement 

-    Excitation of Edge MHD instabilities 

     → Appearance of new rational surface due to extension of long-Lc region 

[S.Sakakibara NF2013, PPCF2013] 

Change of magnetic topology is a key (n*, b, configuration etc.)  
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  Summary 

High-beta experiments have been done in order to extend operation 

regime to low collisional one. 

 Volume-averaged beta value of 4.1 % was achieved at 1 T by multi-pellet 
injections, and 3.4 % could be maintained for a long time by gas-puff fueling. 

 Strong instability excited in the core was observed in multi-pellet discharges, 
which is expected to be stabilized by magnetic well formation due to the 
increase in beta. 

 Maximum beta in steady-state discharge (gas-puff) is realized by 
improvement of particle confinement. The reduction of particle flux to 
divertor is obviously observed after the transition. 

 Edge MHD instabilities excited after the transition limit the achieved beta. 
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Reference Materials 



  MHD Equilibrium in Pellet discharge 

 HINT2 predicts extension of stochastic regime 

Disturbance of 

magnetic field 

line  

Plasma is confined 
in stochastic regime 

Pressure 
profile 

i/2p 

Magnetic field 
structure 
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  Ap= 6.6 and 5.8（Rax = 3.56m, 1T） 

    - Comparison of  discharges - 

Beta value before transition is almost the same in both cases 

- The transition is observed only in Ap = 5.8 

・Shafranov shift in Ap = 6.6 is smaller than that in Ap = 5.8  
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 No transition and strong instabilities in  
   core and edge at Ap = 6.6 

Ap = 5.8 Ap = 6.6 

i/2p=0.5 

i/2p=1.0 

i/2p=1.5 

i/2p=2.0 

Freq. 

<b> 

Excited modes are quite different despite b and P-profile are almost the same 

 Ap = 6.6 : core and edge instabilities are unstable 

 Rax = 3.56 m configuration is not suitable for high-beta plasma production 
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  Ap= 6.6 and 5.8（Rax = 3.56m, 1T） 

     - MHD Equilibrium - 

P0 and pressure profile are almost the same 

・Ap = 6.6: ia/2p ~ 2, Ap = 5.8: ia/2p ~ 3 
Ap = 6.6 and 5.8 (before and 
after transition) 

Ap = 6.6 
Before 

transition 

After 
transition 

Ap = 5.8 Ap = 6.6 
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 Fluctuation at divertor synchronizes with  

  MHD mode 

 Fluctuation of ion saturation current is enhanced during the transition 

 Strong correlation with m/n = 2/3 MHD mode 

m/n=2/3 

Fluctuation of ion 
saturation current 

Magnetic 
Fluctuation 
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 Shielding by magnetic island? 

Before trans. 
After trans. 

Magnetic 
island? 

Increment of density is observed only in 
periphery 

 Magnetic island appears around i/2p=1 
surface after the transition 

      → suppress influx of particles to core?  
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  MHD equilibria before and after transition 

m/n=1/2 

m/n=2/3 

27 
S.Sakakibara, IAEA-FEC2016, Oct.16-22, 2016, Kyoto 



Suppression of 
i/2p < 1 modes 

Suppression of 
i/2p  1 modes 

i/2p = 1/2 

Suppression of 
i/2p  2 modes 

b 
b b 

<bdia>, ne 

i/2p = 1 

i/2p = 3/2 

i/2p = 2 

i/2p = 5/2 

 Change of MHD activities with b 
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 Magnetic Configuration for high-beta 
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Previous High-b 

Recent High-b 

Magnetic configuration was decided based on Rax
v scan experiments with 

constant PNBI and ne. 

- Ap = 6.6 in previous high-n* exp. 

- Ap = 5.8 in recent low-n* exp. 

3.56 m 

3.54     3.55    3.56     3.57     3.58 

Rax (m) 

4 

 

3 

 

2 

 

1 

 

0 

<
b

d
ia

> 
(%

) 

PNBI, ne ~ constant 

Gas-puff 

Pellet 

Ap = 5.8 



 Global Energy Confinement property 

Inward shift of Rax
v recovers confinement property (Ap = 5.8)  
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Ap = 6.6 (Prev. high-b) Ap = 5.8 (Recent high-b) 

- Ap = 5.8: Improvement of particle confinement is one of reasons for recovery 
of global energy confinement property  

- Ap = 6.6: The confinement property is almost the same 
                      (No improvement of particle confinement, strong instabilities…)  
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  Negative electric field is formed  

  after the transition 

Profile of electric field is clearly 
changed after the transition 

Preliminary 
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- Er is significantly changed 

at R > 4.4 m 
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  Change of  dominant mode with beta 

Excitation of edge MHD mode（m/n = 1/2, 2/3) just after the transition 
⇒ Extension of confinement region leads to appearance of new resonant surface. 
- Resonance of dominant mode is changed from inner region to outer one  
  [A.Komori et al., POP2004] 

        NBI 
NBI+ICRF 

        NBI 
NBI+ICRF 

~ 3% ~ 3.4% 

32 
S.Sakakibara, IAEA-FEC2016, Oct.16-22, 2016, Kyoto 



  Change of  dominant mode with beta  

Resonance of the dominant mode : i/2p=3/2→ 2/1 
 - Consistent with extension of plasma confinement region 

No excitation 

m/n = 2/3 mode 

m/n=2/3 

m/n=1/2 

~ 3% 

~ 3.4% 

Ion saturation current 

33 
S.Sakakibara, IAEA-FEC2016, Oct.16-22, 2016, Kyoto 



High beta operation has been realized by two scenarios 

Ap = 5.8 

(~2003) 

Ap = 6.3 

(2004) 

Ap = 6.6 

(2005~) 

Standard 

Scenario 

SDC 

Scenario 

 Strategy of  high-beta Experiments in LHD 

Standard scenario (broaden P-profile) 

 - High Ap configuration for optimizing heating 
efficiency, transport and MHD 

 - <b> of 5.1 % was obtained at low-field 

Super Dense Core scenario (peaked P-profile) 

 - Peaked P profile by multi-pellet injections 

 - High density (> 1020 m-3) 

 - Central b of 10 % was realized at high-field 
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  - Steady-state high-beta discharge was realized in 
optimized configuration 

  → Verification of ability in high beta plasma 
production in heliotron 


