
1 TH/P6-8

Progress in first-principles simulation of
SOL plasma turbulence and neutral atom

dynamics with the GBS code

P. Ricci1, F. Halpern1, J. Loizu2, S. Jolliet1, R. Jorge1,3, J. Morales1, A. Mosetto1, P.
Paruta1, F. Riva1 and C. Wersal1

1Swiss Plasma Center (SPC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-
1015 Lausanne, Switzerland
2Max-Planck-Princeton Center for Plasma Physics, Wendelsteinstraße 1, D-17491 Greif-
swald, Germany
3Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lis-
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Abstract:
The GBS code was developed in the last few years to simulate plasma turbulence in SOL
conditions. GBS advances the drift-reduced Braginskii equations for low-frequency plasma
turbulence, solving at the same time a kinetic equation for the neutral atoms by the method
of characteristics. The interaction of the plasma with the neutrals is taken self-consistently
into account, by evaluating plasma source and energy losses due to ionization events, the
drag due to charge-exchange collisions, and the recombination processes. GBS verification
was performed by using the method of manufactured solutions, and its results have been
validated against experimental data from several tokamaks worldwide, showing good agree-
ment. In the present work, we focus on our recent insights on the neutral atom dynamics.
We first illustrate the model that allows us to evolve at the same time plasma turbulence
and neutral atom dynamics. Second, we describe our recent progress in the study of the
transition from the sheath- to the conduction-limited regimes that was simulated in GBS by
increasing the plasma density in the system. Thanks to the simulation results, we expanded
and refined the so-called two-point model that is used to estimate the drop of electron and
ion temperature along the magnetic field lines in the SOL. We also report on the most
recent GBS research activities targeted to increase the flexibility of GBS, that allowed us
to study the effect of shaping (e.g., elongation and triangularity) on the SOL width and to
uncover the physics at play at the interface with the closed flux surface region.

1 Introduction

The interaction between neutral dynamics and turbulence in the SOL is a largely un-
explored area of research, despite the fact that it has critical consequences for fuelling,
confinement, and level of heat load onto the vessel. For example, the steady-state heat
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load onto the vessel constrains the lifetime of the plasma facing components of tokamak
devices and regulate the level of impurities in the core, two critical issues on the way
towards a fusion reactor. The heat load depends on the scrape-off layer (SOL) width [1],
which results from a balance between plasma outflowing from the core region, turbulent
transport, and losses to the divertor or limiter, and involves a complex interaction of the
neutral atoms with the plasma. Understanding the interaction between plasma turbulence
and neutral atom dynamics in the SOL is therefore crucial for the operation of ITER and
beyond.

The GBS code has been developed in the last few years to simulate plasma turbulence
in SOL conditions [2, 3]. GBS advances the drift-reduced Braginskii equations for low-
frequency plasma turbulence [4], solving at the same time a kinetic equation for the neutral
atoms by the method of characteristics [5]. In GBS the plasma dynamics is evolved as the
interplay between plasma sources (due to the neutral ionization and the plasma outflow
from the tokamak core), turbulent transport, and plasma losses (at the limiter or divertor
plates or through recombination processes). The simulations evolve self-consistently both
the plasma profile and its fluctuations, with no separation between the equilibrium and
fluctuations. A detailed study of the interaction of the plasma with the solid wall was
carried out in order to implement correctly the physics of this region in GBS [6]. The
plasma wall interaction was modeled by using a fully kinetic code and, based on the
kinetic results, a set of boundary conditions was found that were implemented in GBS at
the sheath edge, where the drift-reduced Braginskii model loses its validity. The neutral
module implemented in GBS represents the first-ever successful implementation of a self-
consistent neutral solver within a first-principles turbulence code [5]. The interaction
of the plasma with the neutrals is taken self-consistently into account, by evaluating the
plasma source and energy losses due to ionization events, the drag due to charge-exchange
collisions, and the recombination processes.

In the past, thanks to the GBS simulations and analytical investigations, we have
reached an understanding of the mechanisms leading to SOL turbulent saturation [7],
which allowed us to estimate the scaling of the SOL width in limited discharges in good
agreement with experiments [8]. We have also pointed out the SOL turbulent regimes [9],
the role of electromagnetic effects [10], the mechanisms determining the SOL electrostatic
potential [11], the phenomena responsible for the SOL intrinsic toroidal rotation [12], the
role of finite aspect ratio effects [13], and the impact of the limiter position [14].

In the present work, we focus on our recent insights on the neutral atom dynamics.
We first illustrate the model that allows us to evolve at the same time plasma turbulence
and neutral atom dynamics. We then describe some of our recent simulation results
that point out the impact of the neutral atom dynamics on the SOL profiles. We finally
report on the progress we carried out to increase the flexibility of GBS. In fact, GBS
simulations focused on the simplest circular limited configuration, as a stepping stone
towards more complicated configurations. Now, we have started to study turbulence in
more advanced geometries. The effect of shaping (e.g., elongation and triangularity) on
the SOL width was simulated and analyzed. The GBS simulation domain was extended
inside the last-closed flux surface. Moreover, in parallel to a new multi-grid solver that
significantly improved the parallelization of GBS [3], a more flexible numerical scheme
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is being implemented that will enable simulations of medium size tokamaks in diverted
geometries.

2 Model equations

In the SOL the plasma dynamics results from the interplay of the plasma sources (due to
the neutral ionization and the plasma outflow from the tokamak core), turbulent trans-
port, and plasma losses (at the limiter or divertor plates or through recombination pro-
cesses). Therefore, a model has to evolve self-consistently both the plasma profile and its
fluctuations, with no separation between the equilibrium and fluctuation scale lengths.

The perpendicular (turbulent) dynamics occurs on time scales longer than the ion
cyclotron period, and it has length scales of the order of ρs, while the relevant length
scale for the parallel dynamics is the magnetic field line length ∼ R. Hence, it is advanta-
geous to eliminate the undesired (fast) temporal scales, and to separate the parallel and
the perpendicular dynamics. The required separation of temporal and spatial scales is
achieved through the use of the following velocity representation:

ve = v‖eb̂ + vE×B + v?,e (1)

vi = v‖ib̂ + vE×B + v?,i + vpol,i (2)

together with the approximation E = −∇φ − b̂0∂tψ, where ψ represents the perturbed
poloidal magnetic flux. The drift velocities vE×B = −∇φ × b̂0/B and v?,e,i = −∇pe,i ×
b̂0/(Ze,iene,iB) are the zeroth order solution to the perpendicular component of the mo-

ment equations, b̂ is a unit vector in the direction of the magnetic field and b̂0 its equi-
librium direction. The ion polarization drift vpol,i is obtained as a first order correction
to vi.

We retain an equation for the electron density, a vorticity equation that enforces charge
conservation, and equations for the ion and electron temperatures and parallel velocities:

∂n

∂t
= − 1

B
[φ, n]−∇(nv‖eb̂) +

2

eB
[C(pe)− enC(φ)] +Dn(n) + Sn + nnνiz − nνrec

(3)
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]
with p = n(Te + Ti), the total pressure, and σ‖ = 1.96e2nτe/me, the parallel conduc-

tivity, where τe is the electron collision time. The generalized vorticity, ω̃ = ω+ 1/e∇2
⊥Ti,

is related to the electrostatic potential by ∇2
⊥φ = ω, while (βe0/2)∇2

⊥Ψ = j‖, with
βe0 = 2µ0pe/B

2 and j‖ = n
(
v‖i − v‖e

)
. The following operators have been introduced

∇‖A = b̂ · ∇A, [A,B] = b̂0 · (∇A × ∇B), and C(A) = B/2[∇ × (b̂0/B)] · ∇A. The
ionization, recombination, elastic electron-neutral, and charge-exchange processes are de-
scribed, respectively, through the use of Krook operators with collision frequencies defined
as νiz = ne〈veσiz(ve)〉, νrec = ne〈veσrec(ve)〉, νen = ne〈veσen(ve)〉, νcx = ni〈viσcx(vi)〉 where
σiz, σrec, σen and σcx, are the ionization, recombination, elastic electron-neutral, and
charge-exchange cross sections. The neutral atoms dynamics is obtained by solving the
kinetic equation

∂fn
∂t

+ v · ∂fn
∂x

= −νizfn − νcx
(
fn −

nn

ni

fi

)
+ νrecfi. (9)

In Eq. (4), the polarization velocity and its divergence retain corrections due to density
gradients, i.e. the commonly used Boussinesq approximation is avoided. The source terms
Sn, STe , and STi

have been added to the density and temperature equations to model the
outflow of hot plasma from the core to the SOL. A detailed study of the interaction of
the plasma with the solid wall was carried out and, based on the kinetic results, a set of
boundary conditions was found, implemented in GBS at the sheath edge [6].

3 Numerical implementation

A radial section of a torus, with coordinate system (y = aθ, x, ϕ) is mapped to a discrete
Cartesian grid. The ϕ coordinate is periodic, while periodicity in y can be selected for
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a chosen range of x – thus, we can vary between a poloidally periodic plasma, a limited
plasma, or we can mix open and closed field lines. Time integration is carried out with
the Runge-Kutta order 4 algorithm.

Spatial gradients are computed using standard second order centered finite difference
formulas, while the E×B non-linear advection terms are discretized using the Arakawa
scheme. The Poisson and Ampère equations can be solved using sparse matrix methods,
or using a stencil-based multigrid solver. The kinetic equation for the neutral atoms is
solved by using the method of characteristics.

The verification of the correct implementation and solution of the model equations
was performed by using the method of manufactured solutions [15]. A thorough bench-
mark of GBS results was also performed against a number of other turbulence codes and
experimental results from basic plasma physics experiments [16]. Detailed comparisons
with gas puff imagining from Alcator C-Mod were carried out with remarkable success
[17].

4 Simulation results
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Figure 2. Snapshots on a poloidal cross-section of plasma density, electric potential, ion and

electron parallel velocities, electron and ion temperatures, neutral density, and the ionization

source term, Siz, for the low-density simulation, n0 = 5 · 1018m�3.

Figure 3. Snapshots on a poloidal cross-section of plasma density, electric potential, ion and

electron parallel velocities, electron and ion temperatures, neutral density, and the ionization

source term, Siz, for the high-density simulation, n0 = 5 · 1019m�3.

computational domain extends from rmin = 0 to rmax = 150⇢s0. The source terms Sn,

STi
, and STe in Eqs. (9) are constant in time, poloidally uniform, and radially Gaussian

around rs = 30⇢s0, that we interpret as the radial position of the LCFS. Quantities

displayed in the figures are normalized to n0, cs0, and Te0.

In Figs. 2 and 3 typical snapshots of plasma density, parallel electron and ion

velocities, electron and ion temperatures, electrostatic potential, neutral density, and

ionization source, Siz = nn⌫iz, are shown on a poloidal cross-section. They show fully

developed turbulence during the saturated state of the two simulations.

The poloidal dependence of the relevant plasma quantities (plasma density, electron

and ion parallel velocities, electron and ion temperatures, electrostatic potential, neutral

density, and Siz) for the low- and high-density simulations are shown in Fig. 4. The

displayed profiles are averaged over a time window of 20 R/cs0, over the full toroidal

angle, and over a radial region extending for 20 ⇢s0, centered at a distance of 30 ⇢s0 from

FIG. 1: Snapshots on a poloidal cross-section of plasma density,
electric potential, ion and electron parallel velocities, electron and
ion temperatures, neutral density, and the ionization source term,
Siz, for a low-density simulation with density at the last closed
flux surface n0 = 5 · 1018m−3.

Figures 1 and 2 show typ-
ical snapshots of plasma
density, parallel electron
and ion velocities, elec-
tron and ion tempera-
tures, electrostatic poten-
tial, neutral density, and
ionization source, Siz =
nnνiz, on a poloidal cross-
section. These snapshots
are taken when turbu-
lence is fully developed
during the saturated state
of two simulations, at low
and high density. T
he poloidal dependence of
the relevant plasma quantities (plasma density, electron and ion parallel velocities, elec-
tron and ion temperatures, electrostatic potential, neutral density, and Siz) for the low-
and high-density simulations are shown in Fig. 3. The displayed profiles are averaged
over a time window of 20 R/cs0, over the full toroidal angle, and over a radial region
extending for 20 ρs0, centered at a distance of 30 ρs0 from the separatrix. We point out
a few interesting differences between the high- and low-density simulations. The poloidal
density profile in the high-density simulation is flatter than in the low-density simula-
tion. This is due to the fact that the plasma source due to the ionizations occurring close
to the limiter inside the SOL is much higher in the high-density simulation, preventing
the plasma density to drop when approaching the sheaths. The parallel velocity profiles
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(which are expected to be approximately linear if the plasma source is poloidally con-
stant) are somewhat flatter close to the limiter in the high-density scenario; however, the
flattening is not particularly significant, because a relatively large fraction of the plasma
density source is still due to the poloidally constant outflow of particles from the core.
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FIG. 2: Same as in Fig. 1, with n0 = 5 · 1019m−3.

Furthermore, both elec-
tron and ion tempera-
ture poloidal gradients in-
crease in the high-density
scenario, which is ex-
pected while going to-
wards the conduction lim-
ited regime. The mech-
anisms that lead to this
temperature drop include
the reduced parallel heat
conductivity (due to lower
temperature and higher density), and the direct energy loss due to ionizations (see, e.g.,
Ref. [18]).

5 Implementation of a flexible numerical algorithm
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Figure 4. Time-averaged poloidal profiles of n, �, Vke, Vki, Te, Ti, nn, and Siz for the low (blue)

and high (red) plasma density scenario.

the separatrix.

We point out a few interesting di↵erences between the high- and low-density

simulations. The poloidal density profile in the high-density simulation is flatter than

in the low-density simulation. This is due to the fact that the plasma source due to

the ionizations occurring close to the limiter inside the SOL is much higher in the

high-density simulation, preventing the plasma density to drop when approaching the

sheaths. The parallel velocity profiles (which are expected to be approximately linear

if the plasma source is poloidally constant) are somewhat flatter close to the limiter

in the high-density scenario; however, the flattening is not particularly significant,

because a relatively large fraction of the plasma density source is still due to the

poloidally constant outflow of particles from the core. Furthermore, both electron

and ion temperature poloidal gradients increase in the high-density scenario, which

is expected while going towards the conduction limited regime. The mechanisms that

lead to this temperature drop include the reduced parallel heat conductivity (due to

lower temperature and higher density), and the direct energy loss due to ionizations

(see, e.g., Ref. [18]). To verify that these are the acting mechanism behind the

temperature drop in the high-density scenario, the balance of the electron temperature

equation, Eq. (9e), in quasi steady state is shown in Fig. 5. The terms on the

right hand side of Eq. (9e) are toroidally, radially, and time averaged, in the same

way as the poloidal profiles in Fig. 4. The terms are arranged into four groups,

namely, the parallel advection term, A = �vkerkTe + 2Te/(3n)[0.71/erkjk � nrkvke],

the parallel di↵usion term, D = Dk
Te

(Te), the plasma-neutral interaction term, N =

nn⌫iz/n[�2Eiz/3 � Te + mevke(vke � 4vkn/3)] � nn⌫enme2vke/(3n)(vkn � vke), and the

source term, S = �1/B[�, Te]+4Te/(3eB)[TeC(n)/n+7C(Te)/2�eC(�)]+DTe(Te)+STe ,

FIG. 3: Time-averaged poloidal profiles of plasma density, electric
potential, ion and electron parallel velocities, electron and ion tem-
peratures, neutral density, and the ionization source term, Siz, for
the low (blue) and high (red) plasma density scenario. Quantities
are normalised to their values at the last closed flux surface.

Studies carried out us-
ing GBS simulations have
helped provide an under-
standing of the turbulence
saturation mechanisms in
the SOL, the non-linear
turbulent regimes, the
scaling of the tokamak
SOL width, the role of
electromagnetic effects, and
the equilibrium electric
field. The code was
designed around a sim-
ple, robust, and scalable
numerical scheme, based
in particular on a field-
aligned approach. This
allowed us to simulate the
SOL of medium size toka-
maks such as TCV or Al-
cator C-Mod at a cost affordable on today’s high-performance computers. This numerical
approach constrained the GBS simulation to limited configuration, with a radially con-
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stant safety factor.
We have now implemented a non- field-aligned approach in GBS [19]. The properties

of this numerical algorithm were tested on the propagation of shear-Alfvn waves. The
parallel derivatives are computed by adding the derivatives along the poloidal and toroidal
directions, which are evaluated with a fourth-order finite difference algorithm. The new
scheme has been applied to limited tokamaks with radially varying safety factor profiles,
and, diverted configurations with an X point.
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