IFE Summary

S. Jacquemot 2 overviews, 6 orals + 19 posters

LMJ ramps up power gradually, allowing a robust roadmap towards ignition

LMJ ramps up power gradually, allowing a robust roadmap towards ignition

LMJ first experiments already provide valuable information to benchmark ignition codes

e.g. plasma jet formation due to target defect or implosion non-sphericity due to asymmetric drive

NIF is the premier facility for full-scale ignition & burning plasma physics

a coherent program since 2009

O. Hurricane J. Phys. Conf. Ser. 717, 012005 (2016)

improving hohlraum & capsule design till ...

22/10/2016

alpha heating was evidenced

from scaling of fusion yield with fuel energy

O. Hurricane *et al*. Nature Phys. 12, 800 (2016)

but record yield still below 30kJ (G_{IR>n}~0.007)

IAEA FEC 2016

J. Edwards OV/3-2

major factors limiting performances are identified

- LPI-driven time-dependent drive asymmetry > new target designs (e.g. capsule shims or alternative ablators) & diagnostic development (e.g. neutron imaging, PW-driven radiography, core dopant x-ray spectroscopy)
- engineering issues (e.g. tent)
- understanding of implosion physics (e.g. kinetics effects)
 dedicated studies at reduced scale

implementing PW beams on MJ facilities allow improved IFE diagnostics & HED science

energetic and brief sources of x-rays and protons for multi-axis time-resolved implosion radiography

J.-L. Miquel IFE/1-1 NNSA blog

22/10/2016

SG-III is coming online soon...

22/10/2016

IAEA FEC 2016

H. Li PDP-20 J. Liu P5-8 (not shown)

... as well as the Russian MJ facility (UFL-2M)

direct drive or indirect drive

0,186 mm

0,162 mr

Au

DT-gas

(0,13 g/cc)

22/10/2016

direct drive is investigated on a large variety of intermediate-scale ns+ps facilities

hot spot pressure > 50 Gbars was demonstrated for direct drive DT implosions on OMEGA

A. Bose et al. Phys. Rev. E 94, 011201(R) (2016)

achieving core conditions (pressure, temperature and density) that lead to significant alpha heating if hydrodynamically scaled to NIF energies (from 26 kJ to 1.9 MJ)

22/10/2016

IAEA FEC 2016

J. Edwards OV/3-2

understanding of laser-plasma interaction (e.g. CBET) is improving

nD multiscale (hydro/PIC) capabilities developed to predict energy transfer due to interferences between 2 (or more) laser beams

thick-ray PGCO approach validated against 2D PIC simulations & implemented in 2D CHIC hydrocode for fast computations

IFE requires high gain, favoring alternative ignition schemes

shock ignition studies highlight importance of hot electrons in implosion

PGCO approach ⇒ non-linear laser-plasma interaction, hot electron generation (due to parametric instabilities) & transport

experimental validation on PALS (planar geometry) & OMEGA (spherical geometry)

OMEGA ablation pressures above min. required

shock ignition studies highlight importance of hot electrons in implosion

PGCO approach ⇒ non-linear laser-plasma interaction, hot electron generation (due to parametric instabilities) & transport

improved laser performances drive increased heating efficiency for e-fast ignition

lasers & B-fields on the route to ignition on laser facilities ...

collimation by external kT B fields of diverging relativisitic e beams

CELI

kT, ns, mm³ B fields can be produced by capacitor-coil targets

> Y. Mori P5-9 H. Azechi OV/4-2 S. Fujioka IFE/1-2 S. Jacquemot PDP-12

lasers & B-fields on the route to ignition on laser facilities ...

collimation demonstrated on LULI2000 (planar geometry) and LFEX (spherical geometry)

... and on Z-pinches: Magnetized Liner Inertial Fusion (MagLIF)

MagLIF combines three complementary design elements into a single target design

Laser heating

Magnetization

1st integrated experiment successfully demonstrated the concept

J. Edwards OV/3-2 N. Ding P5-4

Compression

22/10/2016

IFE reactors are conceptually designed & adequate technologies studied

LIFT & CANDY concepts (Japan)

Instituto de Fusión Nu

high-repetition rate drivers (diodepumped, ceramics, coherent beam combination) & target injection systems

22/10/2016

conclusion

- ✓ our understanding of ICF physics (laser-plasma interaction, hydrodynamics, etc.) is progressing
- ✓ complementary MJ-class facilities will soon allow comparative full-scale experiments on multiple schemes
- new ideas may arise from this competition paving the way to ignition

 ✓ in parallel, technological bricks for a prospective IFE reactor are developed