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Abstract:

Zonal flow (ZF) and zonal current (ZC) in fusion devices are manifestations of, respectively,
electrostatic (ESCC) and magnetostatic (MSCC) convective cells in uniform plasmas. Sim-
ilarly, kinetic Alfvén waves (KAW) appear as kinetic Alfvén eigenmodes (KAE) due to the
presence of Alfvén continuum. Employing this paradigm, we have investigated the sponta-
neous excitation of CC via modulational instabilities induced by a finite-amplitude pump
KAW both analytically and by numerical simulations. Our results demonstrate that ki-
netic finite ion Larmor radius (FILR) effects play crucially important roles in the excitation
mechanism. More specifically, we have found that (i) spontaneous excitation only sets in
when both the pump KAW and the CC have perpendicular wavelengths comparable to the
ion Larmor radius, and (ii) both ESCC (ZF) and MSCC (ZC) are excited simultaneously.
Results of fluid-electron and Vlasov-ion hybrid simulations show good agreements with ana-
lytical predictions. Implications to ZF/ZC excitations by KAEs in laboratory fusion devices
will also be discussed.

1 Introduction

In magnetically confined fusion plasmas such as tokamaks, zonal flows (ZF) and zonal
currents (ZC) or, more generally, zonal structures (ZS) correspond to long-lived or oscil-
lating electromagnetic perturbations with predominant variations in the radial direction.
Since, typically, ZS are linearly stable, they are usually nonlinearly excited via mode-
mode coupling processes by the primary driving waves such as drift-wave or Alfvén wave
instabilities [1]. As ZS have micro-scale (ρi) or meso-scale (

√
ρia) radial variations, they

may be regarded as radial corrugations in the macro-scale (a) “smooth” equilibrium pa-
rameters. Here, ρi and a are, respectively, the thermal ion Larmor radius and the minor
radius of, e.g., a tokamak plasma. Thus, as the secondary ZS are nonlinearly excited,
they will scatter the primary driving instabilities to shorter-wavelength stable regime and,
thereby, nonlinearly stabilize the driving instabilities. In addition, the electromagnetic ZS
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perturbations could also modify charged-particle phase-space orbits. As a consequence,
wave-particle resonance could be detuned; leading to suppression of the instability driving
mechanism. That ZS could play crucial roles in self-regulating the nonlinear evolution of
the driving instabilities and associated plasma transport processes have motivated inten-
sive research on this topic by the fusion community.

Shear Alfvén waves (SAW), manifested as Alfvén eigenmodes (AEs) spontaneously
excited by various instabilities, are prevalent in magnetically confined fusion devices [2].
It is, therefore, important to understand the nonlinear generating mechanisms of ZS by
SAW. Previous studies have revealed an important property of ZS generation by SAW.
That is, in the long-wavelength ideal magnetohydrodynamic (MHD) regime, the two
dominant nonlinear wave coupling processes, the Reynolds and Maxwell stresses, cancel
each other [3, 4]; leading toward the existence of the so-called Alfvénic state [5, 6]. In
order to investigate ZS generation by SAW, one, thus, needs to break the Alfvénic state
by considering effects due to, e.g., the toroidal geometry and/or the finite ion Larmor
radii (FILR) [7]. In the latter regime, SAW becomes the kinetic Alfvén wave (KAW) and
is the focus of the present investigations. Note that, in fusion devices, KAWs appear as
kinetic AEs (KAEs) due to the presence of SAW continuum.

In the present work, we address the modulational instability process by which KAW
may excite convective cells (CC) in a uniform magnetized plasma. As shown below, this is
a useful paradigm to elucidate ZS generation by KAW through the braking of the Alfvénic
state at short wavelength. Modulational instability, in general, is the reinforcement by
nonlinearity of the deviation from wave periodic behavior, which may lead to spectral
sidebands and possibly to breaking of the periodic fluctuation into modulated pulses. In
Sec. 2, we present the theoretical framework for the analysis of modulational instability
of a finite amplitude KAW and its decay into CCs and matching sideband KAWs. This
allows us to derive the dispersion relation of modulational instability and the threshold
condition for CC excitation. To verify analytical predictions, Sec. 3 illustrates numerical
analyses obtained by a hybrid code solving for responses of fully kinetic ions and massless
electron fluid [8, 9]. Numerical simulation results and analytical theory are shown to be in
excellent agreement [10]. Finally, Sec. 4 provides concluding remarks and a discussion of
the implications of present results for ZS generation by KAE in toroidal fusion plasmas.

2 Theoretical formulation

Convective cells are zero-frequency electromagnetic perturbations, which vary only per-
pendicular to the confining magnetic field B0; i.e., with parallel wave number k‖ =
k · B0/B0 = 0. Zero-frequency ZS (ZFZS), thus, can be considered as a manifesta-
tion of CC in laboratory fusion devices. In particular, zonal flow (ZF) and zonal current
(ZC) correspond to electrostatic (ESCC) and magnetostatic (MSCC) convective cells,
respectively. The adopted theoretical model then consists of modulational interactions
between a finite-amplitude pump KAW, (ω0,k0), and small-amplitude electromagnetic
CC, (ωz,kz), as well as lower- and upper-KAW sidebands; (ω− = ωz − ω0, k− = kz − k0,
ω+ = ωz +ω0, k+ = kz +k0). Here, ω0 and k0 satisfy the linear KAW dispersion relation
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and k‖z = 0. The perturbed distribution functions are given by the nonlinear gyrokinetic
equation [11]; i.e.,

δfk = − (e/T )FMδφk + exp (−iρ · k⊥) δgk , (1)

i
(

k‖v‖ − ωk
)

δgk − (c/B0)Λ
k′′

k′

[

〈δLg〉k′ δgk′′ − 〈δLg〉k′′ δgk′
]

= −iωk (e/T )FM 〈δLg〉k . (2)
Here, B0 = B0ẑ, FM is the Maxwellian distribution, ρ = ẑ× v/Ω, Ω = eB0/(mc), Λ

k′′

k′ =
(k′

⊥ × k′′
⊥) · ẑ, k = k′+k′′, 〈...〉 denotes gyro-phase averaging, δLg = exp (ρ ·∇) δL, δL =

δφ−v‖δA‖/c and 〈δLg〉k = Jk
(

δφ− v‖δA‖/c
)

k
≡ JkδLk. δφ and δA‖ are, respectively, the

scalar and the parallel to B0 component of the vector potentials, Jk = J0(k⊥ρ) with J0 the
Bessel function and ρ = v⊥/Ω. Meanwhile, the field equations are given by the following
quasi-neutrality condition, which, assuming one single ion species with unit electric charge
and n0 equilibrium density, becomes

(1 + Ti/Te) δφk = Ti/(n0e)

∫

(Jkδgki − δgke) dv , (3)

along with the generalized nonlinear gyrokinetic vorticity equation

ik‖δj‖k − i
c2

4π

ωkk
2
⊥

v2Abk
(1− Γk)δφk = −Λk

′′

k′

(

δA‖k′
δj‖k′′

B0

− δA‖k′′
δj‖k′

B0

)

+
ec

B0

Λk
′′

k′

∫

[(JkJk′ − Jk′′)δLk′δgk′′i − (JkJk′′ − Jk′)δLk′′δgk′i]dv. (4)

Here, Γk = I0(bk) exp(−bk), I0 is the modified Bessel function, bk = k2⊥ρ
2
i , the Alfvén speed

is vA = B0/(4πn0mi)
1/2, and δj‖k is given by the Ampère’s law δj‖k = (c/4π)k2⊥δA‖k. The

first nonlinear term on the right hand side of Eq. (4) is the Maxwell stress, while the
second one reduces to the well-known Reynolds stress for bk ≪ 1 [2, 10].

Equations (3) and (4) can be thought of, respectively, as equation for δφk and δψk ≡
ωkδA‖k/(k‖c), which we choose as field variables. Thus, Eqs. (3) and (4) fully determine
the nonlinear evolution of k‖ 6= 0 modes, that is of KAW sidebands, while the pump KAW
satisfies the linear mode dispersion relation

ǫAk|k=k0
=

[

1− Γk
bk

− σk
k2‖v

2
A

ω2
k

]

k=k0

= 0 , (5)

with σk ≡ 1 + τ(1 − Γk), τ ≡ Te/Ti; and the polarization condition δψ0 = σ0δφ0. For
k‖ = 0 CC modes, Eqs. (3) and (4) are not independent [2, 10]: Eq. (4) can be used for
the ESCC response δφz, while the equation for the MSCC response δψz ≡ ω0δA‖z/(k‖0c)
is given by the parallel electron force balance, which can be suitably rewritten as [10]

δψz = i
cσ0
ω0B0

Λkzk0

(

δφ0δψ−

1− ωz/ω0

+
δφ∗

0δψ+

1 + ωz/ω0

)

. (6)

Employing the above equations, one can then straightforwardly derive an analytical
KAW-CC modulational instability dispersion relation, which depends on parameters such
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as k0 = k‖0ẑ + kxx̂, kz = kyŷ and the pump amplitude δBy. In particular, Eqs. (3) and
(4) are solved for the KAW sideband response, δφ± and δψ±, which is then substituted
into the CC response; i.e., Eq. (4) for δφz and Eq. (6) for δψz . The modulational
instability dispersion relation can be derived in general, but below we specialize to the
case kz ⊥ k⊥0 in order to maximize nonlinear interaction. Thus, b± = b0 + bz, Γ+ = Γ−,
etc.; and the frequency mismatch, ∆± = ∆, of KAW sidebands with respect to normal
mode frequency is [10]

∆

ω0

=
b+σ+(1− Γ0)− b0σ0(1− Γ+)

2b0σ0(1− Γ+)
. (7)

In this way, letting ωz = iγz, the coupled nonlinear equations for CC response can be cast
as [10]

[

γ2z +
∆2

1 + ∆/ω0

+
γ4z

4ω2
0(1 + ∆/ω0)

]

δφz = −αφ(δφz − δψz) + βφδψz

+
γ2z

2ω2
0(1 + ∆/ω0)

[

−α̂φ(δφz − δψz) + β̂φδψz

]

,

[

γ2z +
∆2

1 + ∆/ω0

+
γ4z

4ω2
0(1 + ∆/ω0)

]

δψz = −αψ(δφz − δψz) + βψδψz

+
γ2z

2ω2
0(1 + ∆/ω0)

[

−α̂ψ(δφz − δψz) + β̂ψδψz

]

. (8)

Here, the nonlinear couplings are controlled via [10]

αφ =

∣

∣

∣

∣

c

B0

kzk⊥0δφ0

∣

∣

∣

∣

2
1

1− Γ+

[

Γ0 − Γ+

1− Γz

(

Γ0 − Γz −
b+
b0

1− Γ0

1 + ∆/ω0

)

+
bz(1− Γ0)

b0(1− Γz)

(

(1− Γ+) σ0 −(Γ0 − Γz)σ+
1 + ∆/ω0

)]

,

βφ =

∣

∣

∣

∣

c

B0

kzk⊥0δφ0

∣

∣

∣

∣

2
1

1− Γ+

[

bz(1− Γ0)

b0(1− Γz)

σ+
1 + ∆/ω0

− Γ0 − Γ+

1− Γz

](

1− Γz − bz
1− Γ0

b0

)

,

α̂φ =

∣

∣

∣

∣

c

B0

kzk⊥0δφ0

∣

∣

∣

∣

2
1

1− Γ+

[

Γ0 − Γ+

1− Γz
(Γ0 − Γz) +

bz(1− Γ0)

b0(1− Γz)
(1− Γ+)σ0

]

,

β̂φ = −
∣

∣

∣

∣

c

B0

kzk⊥0δφ0

∣

∣

∣

∣

2
1

1− Γ+

(

Γ0 − Γ+

1− Γz

)(

1− Γz − bz
1− Γ0

b0

)

Meanwhile [10],

αψ =

∣

∣

∣

∣

c

B0

kzk⊥0δφ0

∣

∣

∣

∣

2
σ0

1− Γ+

∆/ω0

1 + ∆/ω0

[(1− Γ+) σ0 − (Γ0 − Γz) σ+] ,

βψ =

∣

∣

∣

∣

c

B0

kzk⊥0δφ0

∣

∣

∣

∣

2
σ0

1− Γ+

∆/ω0

1 + ∆/ω0

σ+

(

1− Γz − bz
1− Γ0

b0

)

,
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FIG. 1: (left) Marginal stability curves in the (kxρi, kyρi) plane for fixed k‖0ρi = 0.02,
τ = 1 and βe = βi = 0.2 and different values of δBy/B0. (right) Modulational instability
growth rate (continuous line) vs. δBy/B0 is compared with hybrid simulation results (open
circles) for (kxρi, kyρi) = (0.8, 0.6) (blue) and (kxρi, kyρi) = (1.0, 0.8) (red). [Reproduced
and adapted from Ref. [10].]

α̂ψ = −
∣

∣

∣

∣

c

B0

kzk⊥0δφ0

∣

∣

∣

∣

2
σ0

1− Γ+

[(1− Γ+)σ0 + (Γ0 − Γz)σ+] ,

β̂ψ =

∣

∣

∣

∣

c

B0

kzk⊥0δφ0

∣

∣

∣

∣

2
σ0σ+
1− Γ+

(

1− Γz − bz
1− Γ0

b0

)

.

Note that Eqs. (8) are valid in general for finite γz/ω0 ∼ O(1) and ∆/ω0 ∼ O(1).

The dispersion relation reveals an interesting property of marginal stability; that is,
the threshold amplitude increases sharply as |kxρi| or |kzρi| become small. In fact, one
can demonstrate analytically that, for |kxρi| ≪ 1, the modulational instability is always
stable. The instability, thus, sets in only when both the pump KAW and CC are in the
short wavelength regime. Marginal stability curves in the (kxρi, kyρi) plane are shown
in FIG. 1 (left) for fixed k‖0ρi = 0.02, τ = 1 and βe = βi = 0.2 and different values
of δBy/B0. Analytically, it is possible to show that the upper boundary of the unstable
domain is given by (ky/kx)u = 1, while the lower boundary can be obtained from the
condition on bzℓ = k2yℓρ

2
i [10]

bzℓ(1− Γzℓ)

2Γzℓ − τ(1− Γzℓ)
=

4k2‖0ρ
2
i

|δBy/B0|2
. (9)

3 Kinetic ion – fluid electron hybrid numerical sim-

ulations

To verify the analytical predictions, discussed above, we have further carried out numerical
simulations using a hybrid code consisting of massless electrons and fully kinetic ions [8, 9].
The growth rates measured in simulations agree well with those predicted analytically.
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Simulations also demonstrate that the excited CCs are electromagnetic in nature; i.e.,
both ESCC (zonal flow) and MSCC (zonal current) are excited simultaneously.

The simulation scheme is fully nonlinear and similar to that of Lin, Johnson, ad
Wang [8, 9], in which ions are treated as fully kinetic particles moving in a self-consistent
electromagnetic field, and electrons are treated as a massless fluid. In the present applica-
tion, however, our analysis of the modulational instability focuses only on the early linear
stage of its exponential growth. The investigation of the fully nonlinear evolution of the
system after ESCC and MSCC are excited by KAW modulational instability is beyond
the scope of our analysis and requires further studies.

Fixed parameters are those of FIG. 1 (left), lengths are normalized to ρi, and the
time to Ω−1

i . The pump mode is imposed everywhere as a steady driver with δB0 =
(0, δBy, 0)sin(ω0t− kxx− k‖0z) and specified wave number and frequency, which are con-
sistent with linear KAW polarization condition and mode dispersion relation [10]. In
what follows, ω0 > 0 and k‖0 > 0 are assumed without loss of generality. From t = 0-10,
the system is filtered to keep only the Fourier mode k0 of initial pump, which allows a
self-consistently development of the pump field structure. For t > 10, more Fourier modes
are released in order to examine the excitation of the CC modes kz = (0, ky, 0) and the
matching KAW sidebands due to couplings of pump KAW with CC modes. Theoretically
derived modulational instability growth rate (continuous line) vs. δBy/B0, based on Eqs.
(8), is compared with hybrid simulation results (open circles) for (kxρi, kyρi) = (0.8, 0.6)
(blue) and (kxρi, kyρi) = (1.0, 0.8) (red) in FIG. 1 (right). Error bars on numerical growth
rates are mostly due to discrete particle noise in the simulations. FIG. 2, meanwhile, shows
the time evolution of δBy, δBx, and δEy in the resulting three wave interaction for a case
with constant pump amplitude δBy/B0 = 0.5 at k0 = (0.8, 0, 0.02). The black solid
curves show the pump mode, for which δBy is constant in time. The δEy component of
the pump is two orders of magnitude smaller than δEx (not shown). The excitation of
the CC mode, with wave number kz = (0, 0.6, 0), is shown with the red curve. Both δBx

and δEy increase nearly exponentially with time from t = 10, as fitted by the straight
dotted line, reaching the saturation levels at t ≃ 53. The growth rate is measured to be
γz/Ωi = 0.16. No power is excited in the δBy component, consistent with kx = 0 in the
CC mode. The green curve depicts the matching KAW mode with k+ = (0.8, 0.6, 0.02),
in which δBx, δBy, and δEy are all seen to also grow exponentially with γz/Ωi = 0.16.

4 Discussions and Conclusions

The present work suggests that filamentary structures including inductive δE‖ with |k‖ρi| =
0 and |k⊥ρi| ∼ O(1) can be efficiently generated by CC spontaneous emission from KAW
[10]. This process can operate simultaneously and, generally, is in direct competition with
KAW parametric decay into sound wave and back-scattered KAW [7, 9, 12]. Thus, the re-
sults presented in this work stress the crucial importance of kinetic analyses for the proper
qualitative and quantitative prediction of nonlinear behaviors of Alfvénic fluctuations in
uniform plasmas [2, 7]. The corresponding self-consistent nonlinear evolution remains un-
explored, with possible implications on vortex and/or current filaments formation. Such
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FIG. 2: Time evolution of δBy, δBx, and δEy in the pump KAW (black), daughter CC
(red), and the matching KAW (green). [Reproduced from Ref. [10].]

studies require fully nonlinear simulations and (gyro-)kinetic analyses [10].

The present results have significant implications on cross field transport. In fact, the
linear phase of the modulational instability, which underlies spontaneous CC excitation
by KAW, tends to isotropize the perpendicular KAW spectrum as a consequence of the
condition kz ⊥ k⊥0 for maximization of the CC generation rate. Thus, when the initial
KAW spectrum is strongly anisotropic in the radial direction due to mode conversion
at SAW resonances at the magnetopause [8, 9], perpendicular transport can occur only
after isotropization of KAW k⊥-spectrum toward the East-West longitudinal direction via
spontaneous CC excitation.

In fusion devices, as anticipated above, KAWs appear as kinetic AEs (KAEs) due to
the presence of SAW continuum. Similar to KAW near the magnetopause, KAE spectrum
in toroidal fusion plasmas is strongly anisotropic in the radial direction [2]; and generation
of ZS by KAE modulational instability, with both ZF and ZC components, isotropizes the
fluctuation spectrum with significant implications on cross field transport. The present
results in uniform plasmas are, thus, readily extended to toroidal fusion plasmas [10].

Generation of ZS by KAEs in fusion devices also has a crucial role as regulation of
fluctuation induced transport. In fact, as anticipated earlier, ZS are linearly stable and
typically scatter the primary driving instabilities to the shorter-wavelength stable domain,
acting as saturation mechanism for the KAE fluctuation spectrum. Meanwhile, due to
the important role of resonant energetic particles (EPs) in the excitation of Alfvénic
fluctuation in fusion plasmas [2], ZS may generally have a counterpart in the phase space
and exist as phase space zonal structures (PSZS) [13]. Further to this, ZS/PSZS due to
KAE may have micro- and meso-scales characterized by both thermal plasma as well as
EP FILR. Thus, they can effectively act as cross-scale coupling between fluctuations on
disparate spatiotemporal scales [14].

To properly assess ZS generation in toroidal fusion plasmas by KAE modulational in-
stability, it is crucial to understand the processes underlying the breaking of the Alfvénic
state [7, 10]. In addition to FILR, discussed above for uniform plasmas, the additional
twist of complex geometry can also importantly modify the properties of the SAW contin-
uous spectrum and mode converted KAW in fusion devices [2]. In particular, frequency
gaps in the SAW continuum ultimately break the cancelation of Reynolds and Maxwell
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stresses [15]. Finite plasma compressibility also has an important role in breaking the
Alfvénic state [2, 7]. Due to modified particle orbits in toroidal geometry, and due to
the unique role of geodesic curvature in causing enhanced radial particle drifts, there is
a complex interplay of FILR, geometry, plasma compressibility and finite magnetic drift
orbit widths that must be taken into account for a proper analysis of nonlinear Alfvén
wave physics in toroidal fusion plasmas [16, 17, 18]. Thus, nonlinear generation of ZS must
be carried out bearing in mind that nonlinear gyrokinetic analyses in realistic magnetic
equilibria are generally needed to provide an accurate and realistic description of fusion
devices [2, 10, 13, 14].
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[6] WALÉN, C., Ark. Mat. Astron. Fys. 30A (1944) 1.

[7] CHEN, L., and ZONCA, F., Phys. Plasmas 20 (2013) 055402.

[8] LIN, Y., et al., J. Geophys. Res. 115 (2010) A04208.

[9] LIN, Y., et al., Phys. Rev. Lett. 109 (2012) 125003.

[10] ZONCA, F., LIN, Y., and CHEN, L., Europhys. Lett. 112 (2015) 65001.

[11] FRIEMAN, E. A., and CHEN, L., Phys. Fluids 25 (1982) 502.

[12] CHEN, L., and ZONCA, F., Europhys. Lett. 96 (2011) 35001.

[13] ZONCA, F., et al., New J. Phys. 17 (2015) 013052.

[14] ZONCA, F., et al., Plasma Phys. Control. Fusion 57 (2015) 014024.

[15] CHEN, L., and ZONCA, F., Phys. Rev. Lett. 109 (2012) 145002.

[16] QIU, Z., CHEN, L., and ZONCA, F., Nucl. Fusion 56 (2016) 106013.

[17] QIU, Z., CHEN, L., and ZONCA, F., Phys. Plasmas 23 (2016) 090702.

[18] QIU, Z., CHEN, L., and ZONCA, F., “Nonlinear Zonal Structure Generation by
Toroidal Alfvén Eigenmode”, 26th IAEA Fusion Energy Conference, Kyoto, 17 - 22
October 2016, Poster TH/P4-21.


	Introduction
	Theoretical formulation
	Kinetic ion – fluid electron hybrid numerical simulations
	Discussions and Conclusions

