
1 TH/P4-18

Nonlinear excitation of subcritical energetic
particle-driven mode by a supercritical

chirping mode

M. Lesur1,2, K. Itoh3,4, T. Ido3, S.-I. Itoh2,4, Y. Kosuga2,5, M. Sasaki2, S. Inagaki2,3,
M. Osakabe3,6, K. Ogawa3,6, A. Shimizu3 and K. Ida3,6
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Abstract:
In collisionless plasmas, it is known that linearly stable modes can be destabilized (sub-
critically) by the presence of structures in phase-space. The growth of such structures is a
nonlinear, kinetic mechanism, which provides a channel for free-energy extraction, different
from conventional inverse Landau damping. However, such nonlinear growth requires the
presence of a seed structure with a relatively large threshold in amplitude. Recently, we
demonstrated that, in the presence of another, linearly unstable (supercritical) mode, wave-
wave coupling can provide a seed, which can lead to subcritical instability. The mechanism
hinges on a collaboration between fluid nonlinearity and kinetic nonlinearity. The subcriti-
cal instability can be triggered, even when the frequency of the supercritical mode is rapidly
sweeping (chirping). The model recovers key features of the bursty onset of geodesic acous-
tic modes (GAM) in a LHD experiment. These previous studies suggest that the strongest
GAM bursts in this experiment are subcritical instabilities, with sustained collaboration
between fluid and kinetic nonlinearities. These results were obtained by a hybrid model,
where the subcritical mode is modeled kinetically, but the impact of the supercritical mode
is modeled by simple wave-wave coupling equations. In this paper, we generalize the study
to the interactions between chirping energetic particle-driven modes, based on a fully kinetic
model (1D Vlasov-Poisson). Preliminary results suggest that a supercritical chirping mode
can destabilize a subcritical mode. This occurs when a phase-space vortex associated with
the chirping of the supercritical mode approaches the resonant velocity of the subcritical
mode.

1 Introduction

A major concern in burning plasmas is that Energetic Particles (EPs) can excite plasma in-
stabilities in the frequency range of Alfvén Eigenmodes (AEs) or Geodesic Acoustic Modes
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(GAMs). These EP-driven modes significantly enhance the transport of EPs themselves,
threatening both confinement quality and first-wall integrity. We are concerned with the
impacts of the trapping of particles in a well of electrostatic potential (nonlinear electro-
static trapping). This is different from the well-known trapping due to the geometry of
the magnetic field in toroidal plasmas, which yields banana orbits.

In many toroidal plasma experiments with strong beam injection systems, EP-driven
modes are frequency observed to split into two branches that sweep upwardly and/or
downwardly, by 10 to 100% of the linear mode frequency, on a timescale much faster
than the equilibrium evolution. This phenomenon is called as chirping. Similar chirping
modes are spontaneously generated within the Berk-Breizman (BB) model [1, 2], which is a
generalization of the bump-on-tail instability [3]. This model includes a collision operator,
and an external wave damping, which accounts for background dissipative mechanisms
at a constant rate γd. In the context of the BB model, chirping has been shown to
correspond to the evolution of phase-space structures [2]. This has later been confirmed
in 3D simulations [4]. These structures are BGK-like vortices in phase-space, with a
depletion or surplus of density, which are formed by electrostatic self-trapping.

The BB model was successfully applied to recover quantitatively the nonlinear evolu-
tion of EP-driven modes in toroidal fusion plasmas. Firstly, it was applied to Toroidal
Alfvén Eigenmodes in MAST [5] and JT-60U [6]. More recently, we developed an extension
of the BB model, which combines the kinetic description of a linearly stable (subcritical)
mode with the nonlinear fluid coupling with a prescribed linearly unstable (supercritical)
mode [7, 8, 9]. In this paper, we refer to this model as the hybrid two-waves BB model.
This model was successfully applied to reproduce qualitatively an experimental observa-
tion in the helical plasma of the LHD, which was described in Refs. [10, 11]. The hybrid
two-waves BB model interprets this experiment as follows: a subcritical GAM is dormant
in the plasma until a supercritical Energetic particle-driven GAM (EGAM) excites it.

Let us now take a more academic point-of-view. Phase-space structure formation is
a kinetic nonlinearity, in the sense that it cannot be described by fluid models, unlike
other nonlinearities such as higher harmonic generation, mode coupling, fluid vortex, etc.
Theory predicts that these structures can tap free energy where wave excitation cannot,
and lead to subcritical instabilities, where the kinetic nonlinearity enables the growth of
a mode that is linearly damped [12, 13]. However, such subcritical growth requires a
large-amplitude seed perturbation. Several scenarios could provide the seed for kinetic
nonlinear growth of a linearly stable mode:

1. the presence of large thermal noise or an external source of wave excitation, or
2. a hysteresic path from supercritical to subcritical regime, or
3. a transfer of energy from another, linearly unstable mode, or
4. a large perturbation of the distribution function at the resonance, due to a phase-

space structure originating from an other, supercritical mode.
Previous works on kinetic subcritical instabilities assumed some initial, relatively large

amplitude (at least, compared to thermal noise) perturbation [14, 15, 16] for the subcritical
mode, corresponding to scenario 1. The hysteretic behavior, corresponding to scenario
2, was obtained in a COBBLES simulation, and will be the subject of a future paper.
This situation is linked to the existence of purely nonlinear steady-state regimes, which
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are consistent with tokamak conditions [20]. Another work explored an artificial scenario,
where a seed phase-space hole is imposed at t = 0 [17].

In Refs. [7, 9], we explored the third scenario with the hybrid two-waves BB model.
We showed that the supercritical mode can provide a seed by transfer of energy, for the
nonlinear growth of the subcritical mode. In Section 2, we summarize these findings.

In the present paper, we aim at exploring the fourth scenario, although a combination
between the third and fourth scenario will not be ruled out. To this aim, we adopt the
standard BB model (fully-kinetic), and set up an initial distribution function such that
one mode is unstable and chirping, an other one is barely stable, and we filter out any
but those two modes. We expect that when a phase-space structure corresponding to
the chirping of the supercritical mode approaches the resonant velocity of the subcritical
mode, the subcritical mode may be destabilized. Our preliminary results, which are shown
in Section 3, suggest that this is indeed the case.

2 The hybrid two-waves BB model

2.1 Model

In the hybrid two-waves BB model, as described in Ref. [9], the electric field E is split
between two waves, E = E1 + E2. The subcritical (daughter) mode (E1) is treated by
the kinetic 1D model, and the supercritical (mother) mode (E2) is treated as a simple
medium for nonlinear energy transfer. For E2, we prescribe the initial amplitude Z2,0

and time-evolution of frequency ω2(t). We assume that the impact of the mother on the
particles near the resonant location of the daughter is negligible. The interaction between
the two waves is modeled by the equations for period doubling.

We adopt a perturbative approach, and cast the equations for wave-particle interac-
tions in a reduced form, which describes the time evolution of the beam particles only
[18]. In this model, the linear frequency of the wave E1 is fixed. Even when chirping
occurs, ω1 does not change. Chirping, when it occurs, is due to the nonlinear evolution
of the amplitude and phase of E1, rather than the evolution of ω1.

The evolution of the energetic particle distribution, f(x, v, t), in the neighbourhood of
the resonance of the daughter mode E1, is given by a kinetic equation [18, 6],
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where δf ≡ f − f0, and f0(v) is the initial velocity distribution. The r.h.s. is a collision
operator, where νf and νd are input parameters characterizing dynamical friction and
velocity-space diffusion, respectively.

The evolution of the two parts of electric field is given by
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where Ej ≡ Zj exp [ı(kjx− ωjt)] + c.c., and n0 is the total density.

The term proportional to γd is an external wave damping, which is a model for all
linear dissipative mechanisms of the wave energy to the background plasma [18]. We note
that in this model, we split the electric field into two parts, and assume that there is one
class of particles (distribution f) which does not interact with one of the two parts of the
electric field. We consider a system composed of the two waves and the latter class of
particles. In this sense, this model system is an open system.

2.2 Phenomenology

Equation (2) contains two nonlinear terms, which we refer to as kinetic nonlinearity (the
term proportional to

∫
fe−ı(k1x−ω1t)), and fluid nonlinearity (the term proportional to

V Z2Z
∗
1e

−ıθt). In the references, we showed that the fluid nonlinearity and the kinetic
nonlinearity can work in collaboration to drive a subcritical instability to relatively large
amplitude.

2.3 Comparison with experiment

In a toroidal device, the linear structure, linear frequency and linear growth rate of an
energetic particle-driven mode is determined by 3D calculations. These linear properties
evolve on a slow timescale of mean field evolution (∼ 100 ms). However, the kinetic
nonlinear effects, which induce chirping and subcritical instability, are linked with the
evolution on a fast timescale (∼ 1 ms). They can be treated perturbatively in the BB
model [2], by taking advantage of the timescale separation. This reduced 1D model is
linked to the 3D mode by a perturbative expansion of a gyrokinetic Hamiltonian around
a resonant surface in phase-space [5].

In the LHD, chirping bursts of Energetic particle-driven GAM (EGAM), with dynam-
ical evolution of frequency (chirping) are routinely observed, with a 10 ms duration [21].
These primary EGAM bursts are sometimes accompanied by a secondary, stronger burst
[10, 11]. The secondary burst has a 1 ms duration, and a peak amplitude that signifi-
cantly exceeds that of the primary burst. The hybrid two-waves BB model interprets this
experiment as follows: the secondary (daughter) mode is a subcritical instability, which
is dormant until the primary (mother) mode excites it. A detailed comparison is given in
Refs. [7, 9].

3 The fully kinetic two-waves BB model

In this section, we still consider two waves in the BB model. However, we model both
waves and the distribution function in a self-consistent, fully kinetic way.



5 TH/P4-18

3.1 Model

We consider a 1D plasma with a distribution function f(x, v, t). In the initial condition,
the velocity distribution f0(v) comprises a Maxwellian bulk of density nM , thermal ve-
locity vth, and a beam of high-energy particles, of density nB (nM + nB = n0), thermal
velocity vTB, and drift velocity vB. To ensure charge neutrality, we assume a fixed back-
ground population of the opposite charge with a distribution function f0(v).

The evolution of the distribution is given by the kinetic equation,
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where E is the total electric field, and k1 is the smallest wave number of the system.
In the expression of the electric field, we filter out all but two wave numbers k1 (cor-

responding to the system size) and k2 = 2k1. The displacement current equation,

∂E

∂t
=

q

ε0

∫
v (f − f0) dv − 2 γdE, (5)

yields the time evolution of the wave. In the initial condition we apply a small perturba-
tion, f(x, v, t = 0) = f0(v)(1 + ε cos k1x), and the initial electric field is given by solving
Poisson’s equation. In Eq. (5), an external wave damping has been added to model all
linear dissipation mechanisms of the wave energy to the background plasma that are not
included in the previous equations [22].

3.2 Setup and preliminary results

In this paper, we choose nB = 0.2n0, vTB = 4.0 vth, vB = 10.0 vth, and a system size
L = 2π/k1 with k1 = 0.05λ−1

D (hence, k2 = 0.1λ−1
D ). Then we adjust γd, νf and νd such

that mode 1 (of wavenumber k1) is linearly unstable and chirping, and that mode 2 (of
wavenumber k2) is linearly stable, but close to marginal stability (barely stable). Here,
we choose γd = 0.32ωp, νf = 0.002ωp, and νd = 0.01ωp.

Fig. 1 shows the time evolution of components k = k1 and k = k2 of the electric
field (for short, E1 and E2). Fig. 1 shows the corresponding spectrogram, with k1 and k2
components split up as well. The supercritical (mother) mode E1 grows as predicted by
linear theory, until it saturates with significant chirping, consistently with earlier nonlinear
theories. It is also similar to the way it behaves in isolation, as we have tested by running
the same simulation but with the component k2 filtered out.

Let us now focus on the evolution of mode E2. This is a subcritical mode, which, if
isolated, would quickly fade out to zero amplitude, as we have tested by running the same
simulation but with the component k1 filtered out. However, when the two components
k1 and k2 are allowed (unfiltered), the mode grows to an amplitude comparable to that
of the mother mode E1. Restricting ourselves to the early (t < 650) evolution of this
daughter mode E2, we can distinguish three phases.
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FIG. 1: Time evolution of the amplitude of electric field, split into components E1 and E2,
which correspond to the supercritical mode and the subcritical mode, respectively. Here,
the electric field is normalized by mvthωp/q. (a) linear scale, (b) semi-logarithmic scale.

FIG. 2: Spectrogram of electric field. The supercritical mode k1 is colored in blue, and the
subcritical mode k2 is colored in red. Colorbars on the right span show the values of the
power spectrum (normalized by a maximum value), spanning two orders of magnitude.
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In a first phase, t < 500, the amplitude grows exponentially, at twice the rate of
the mother. In a second phase, 500 < t < 600, the growth of both the mother and the
daughter slows down, which can be interpreted as the mother saturating and the daughter
responding to the mother. However, at t ≈ 600, the growth of the daughter re-accelerates
(even though the growth of the mother continues to slow down). In the spectrogram,
we observe that this reacceleration phase, 600 < t < 650, is associated with a frequency
ω1 ≈ 0.71, which is the linear frequency of the daughter. Furthermore, we observe that
this occurs when a chirping branch of the mother approaches a frequency ω2 ≈ 0.36,
which is about half the above daughter frequency.

Since k2 = 2k1, we conclude that, here, the reacceleration of the daughter corresponds
to a time where the velocity of a phase-space structure corresponding to a chirping branch
of the mother approaches the resonant velocity of the daughter. Indeed, the linear resonant
velocity of the daughter is v1 = ω1/k1 ≈ 7.1, and the velocity of the phase space structure
corresponding to the down-chirping branch of the mother at t ≈ 600 is v2 = ω2/k2 ≈ 7.2.

In similar simulations as well, we found this correspondence when a subcritical daugh-
ter emerges. However, we have only performed a handful of such simulations with varying
parameters. Further work is required to present the evidence that this is not just fortu-
itous, confirm the implied mechanism, and investigate the underlying mechanism.

4 Conclusions

We have reviewed the developement of reduced models for energetic particle-driven, non-
linear excitation of subcritical instabilities. The first model, hybrid two-waves BB model
combines a 1D kinetic equation with equations for period doubling, which models wave-
particle interactions between two modes. This model was shown to reproduce key aspects
of the experimental observation of Refs. [10, 11]. It interprets an abrupt GAM burst as
a manifestation of the collaborative fluid-kinetic subcritical instability. In contrast with
previously-known kinetic subcritical instabilities, the amplitude stays below the kinetic
threshold, and chirping seems to be limited by a quasi-phase-matching condition with the
mother mode. These results imply a new channel of mode excitation, which modifies the
flow of energy in the system.

The novelty of this paper concerns the second model, the fully-kinetic two-waves BB
model. We investigated whether two energetic particle-driven modes can interact via
phase structures in the distribution function. This can be seen as a generalization of
the previous study. Preliminary results suggest that a supercritical chirping mode can
destabilize a subcritical mode. This occurs when a phase-space vortex associated with the
chirping of the supercritical mode approaches the resonant velocity of the subcritical mode.
Further analysis is underway in order to assess whether this is the dominant underlying
physics, or whether other mechanisms (such as fluid-like energy exchange between waves)
play important roles as well.
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