Assessment of the Baseline Scenario at q₉₅~3 for ITER

ITPA: IOS-TG database for stationary discharges with $q_{95}=2.7-3.3$ with input from AUG, C-Mod, DIII-D, JET, JT-60U and ITER \rightarrow wide range of plasma conditions

- The maximum H_{98y2} obtained increases at lower collisionality.
- High-Z metal wall devices have (so far) not accessed low v^* .
- H_{98y2} increases with β_N: For high-Z metal wall devices H_{98y2}~0.8-0.9 at β_N≤1.8.
- Achieving f_{GW}~0.85 with H_{98y2}=1 is at the top of the data range available.
- H_{98y2} can be 1 for P_{loss}/P_{LH}~1 at low ELM frequency (CFC). However, not possible with high-Z metal walls (impurity accum.) → H_{98y2}~1 only for P_{loss}/P_{LH}~2.

