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Critical Gradient Behavior of Alfvén Eigenmode (AE) 
Induced Fast-Ion Transport Has Been Observed in DIII-D  

•  Key features of critical gradient phenomenon: 

[Collins et al., PRL 116 (2016)]  

1.  
Density profiles 

become ‘clamped’ 
(profile resiliency) 

Fast-Ion Density
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Critical Gradient Behavior of Alfvén Eigenmode (AE) 
Induced Fast-Ion Transport Has Been Observed in DIII-D  

•  Key features of critical gradient phenomenon: 

[Collins et al., PRL 116 (2016)]  

1.  
Density profiles 

become ‘clamped’ 
(profile resiliency) 

Fast-Ion Density

Neutral Particle Analyzer

2.  
Sudden increase in 

transport at a threshold 
(stiff transport) 

Fast-Ion Transport
Threshold

•  Recent experiments at DIII-D show that fast-ion transport becomes 
stiff when AEs cause fast-ion orbits to become stochastic.  

3.  
Transient bursts of 

fast-ion losses 
(intermittency) 

Fast-Ion 
Losses
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Attractive Steady-State Tokamak Operation 
Requires Confined Energetic Particles 

 
•  AEs can cause transport that reduces: 
-  absorbed beam heating power 

-  current drive  

-  achievable βN 

 
 

AEs degrade fusion 
performance by 40% in    

DIII-D steady state scenarios 

[Heidbrink et al., PPCF 56 (2014)]  
[Holcomb et al., Phys. Plasmas 22 (2015)]  

AE Amplitude (a.u.)  



6 

Attractive Steady-State Tokamak Operation 
Requires Confined Energetic Particles 

 
•  AEs can cause transport that reduces: 
-  absorbed beam heating power 

-  current drive  

-  achievable βN 

 
•  AEs are driven by gradients in EP 

profiles & are predicted to be 
unstable in ITER 

 

AEs degrade fusion 
performance by 40% in    

DIII-D steady state scenarios 

[Heidbrink et al., PPCF 56 (2014)]  
[Holcomb et al., Phys. Plasmas 22 (2015)]  

AE Amplitude (a.u.)  

•  Important questions:  
-  When is transport significant?  

-  How can we effectively predict 
EP profiles, beam ion profiles, and 
losses to optimize scenarios?   
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Outline 

• DIII-D critical gradient experiment & analysis technique. 

• Critical gradient transport varies in phase-space. 

• Theoretical analysis indicates stochasticity sets threshold.  
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Outline 

• DIII-D critical gradient experiment & analysis technique. 

• Critical gradient transport varies in phase-space. 

• Theoretical analysis indicates stochasticity sets threshold.  
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4.1 MW NBI
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The Experiment: Use NBI Power to Manipulate AEs & 
Beam Modulation to Measure Fast-Ion Transport 

4.1 MW NBI 6.4 MW NBI

•  Control AE activity with NBI power & 
geometry during the current ramp  
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The Experiment: Use NBI Power to Manipulate AEs & 
Beam Modulation to Measure Fast-Ion Transport 

4.1 MW NBI 6.4 MW NBI

•  Control AE activity with NBI power & 
geometry during the current ramp  

    (reverse-shear, L-mode plasma) 
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The Experiment: Use NBI Power to Manipulate AEs & 
Beam Modulation to Measure Fast-Ion Transport 

4.1 MW NBI 6.4 MW NBI

•  Control AE activity with NBI power & 
geometry during the current ramp  

    (reverse-shear, L-mode plasma) 
•  Measure transport by modulating the 

fast-ion pressure profile with off-axis 
neutral beam injection (150LT) 
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Stiff Transport Causes Clamped Equilibrium Density 
Profiles and Distortions In Modulated Signals 

•  Profile resilience has also been observed in off-axis 
beam injection experiments.  

  [Heidbrink et al.,Nucl. Fusion 53 (2013)] 
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Stiff Transport Causes Clamped Equilibrium Density 
Profiles and Distortions In Modulated Signals 

•  Profile resilience has also been observed in off-axis 
beam injection experiments.  

  [Heidbrink et al.,Nucl. Fusion 53 (2013)] 
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Technique: Use Particle Balance To Calculate Transport 

source  
(modulated 

beam) Sink term  
(modulated particles 

thermalize) 

Divergence of Flux 
(transport) due to 

interaction with AEs 
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Technique: Use Particle Balance To Calculate Transport 

1.  Modulate the fast-ion source with  
     off-axis neutral beam injection (150LT) 
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Technique: Use Particle Balance To Calculate Transport 

1.  Modulate the fast-ion source with  
     off-axis neutral beam injection (150LT) 

 
•  fast-ion Dα (FIDA) spectroscopy  

 - density profiles  
• solid-state neutral particle analyzer (NPA)  

 -fast neutrals from charge-exchange 
• neutron emission (mostly beam-plasma) 

 -proxy for volumetric fast-ion population  

2. Measure fast-ion evolution: 

source  
(modulated 

beam) Sink term  
(modulated particles 

thermalize) 

Divergence of Flux 
(transport) due to 

interaction with AEs 

159244, 2.4 MW
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Technique: Use Particle Balance To Calculate Transport 

3. Calculate S and τ, solve for ∇·Γ  ˜	

•  Use TRANSP/FIDASIM to calculate source from 
classical signal [Heidbrink et al., NF 2016]  

 

˜	
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Technique: Use Particle Balance To Calculate Transport 

3. Calculate S and τ, solve for ∇·Γ  ˜	

•  Use TRANSP/FIDASIM to calculate source from 
classical signal [Heidbrink et al., NF 2016]  
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Technique: Use Particle Balance To Calculate Transport 

•  Transport analysis is complicated because    
fast-ion ‘density’ is phase-space dependent: 

Modulated  
distribution function 

Diagnostic 
sensitivity 

à Flux is not a function  
of radius alone 

3. Calculate S and τ, solve for ∇·Γ  ˜	

•  Use TRANSP/FIDASIM to calculate source from 
classical signal [Heidbrink et al., NF 2016]  
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Outline 

• DIII-D critical gradient experiment & analysis technique. 

• Critical gradient transport varies in phase-space. 

• Theoretical analysis indicates stochasticity sets threshold.  
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Probing Localized Transport in Phase Space 
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•  Diagnostics measure a 
portion of fast-ions 

- NPA measures narrow 
band of trapped fast-ions  
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•  AEs are driven by bulk 
population of fast-ions 
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Probing Localized Transport in Phase Space 
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Different Diagnostics Provide Comprehensive 
Survey of Fast-Ion Orbit Topology Space 

Trapped fast ions  
(v||        /v <  0.3) 

Co-passing fast ions  
(v||        /v >  0.3) 

 

High energy,  
volume-averaged 
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Onset Threshold for Transport Differs Between  
Various Fast-ion Diagnostics 

NPA threshold 

 Neutron 
threshold 

Fast-Ion Transport 



28 

40

60

80

100

120
#159249

-4

-2

0

2

4

 (
1

0
1

3
 /

s
)

Beam Power (MW)

(TRANSP)

500 600 700 800 900

Time (ms)

0.0

1.0

(1
0

1
5
 n

e
u

t.
/s

2
)

log10(P1/ 2 )

-4.8

-4.6

-4.4

-4.2

-4.0

-3.8
-3.6

F
r
e

q
u

e
n

c
y

(k
H

z
)

Density Fluctuations

Modulated Neutron Signal

  Modulated Transport  (        )∇ ⋅ Γ
~

Threshold for Significant Transport Is Clearly 
Beyond AE Linear Stability Threshold 

AEs present, but 
neutron diagnostic 
shows minimal 
transport  



29 

Varied Beam Geometry Used To Drive Different AE 
Resonances By Changing Bulk Fast-Ion Distribution 
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Threshold and Stiffness Change as Beam 
Deposition Shifts Resonances in Phase-Space 

•  For a given total beam power, tangential beam injection results in the 
strongest total AE amplitude. 

•  However, perpendicular beam injection drives modes that are more 
efficient at transporting the trapped particle population. 

AE Amplitude Fast-Ion Transport 
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Outline 

• DIII-D critical gradient experiment & analysis technique. 

• Critical gradient transport varies in phase-space. 

• Theoretical analysis indicates stochasticity sets threshold.  
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Probing Localized Transport in Phase Space 

•  Theoretical analysis shows 
multiple, overlapping AEs 
cause stochastic orbits 

•  Expect to measure transport 
at intersection of: 

- Diagnostic sensitive space 
- Modulated beam orbits 
- AE resonance 

Modulated Beam Deposition 
Resonance (All Modes) 
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NOVA AE Mode Amplitudes are Matched to Experiment 
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•  The linear ideal MHD code NOVA is used to compute AE frequencies 
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on ECE fluctuation measurements.  
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Stochasticity is Calculated Using ORBIT 

•  ORBIT code determines which portions of fast-ion phase space have 
orbits that reside in islands or become stochastic due to AE modes.  

Stochastic orbits 

Toroidal Canonical Angular Momentum
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le

 [R. B. White, Com. Nonlin. Sci. Num. Sim. (2012)]   

f=86 kHz, 
n=3 RSAE
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Stochasticity is Calculated Using ORBIT 

•  ORBIT code determines which portions of fast-ion phase space have 
orbits that reside in islands or become stochastic due to AE modes.  

Stochastic orbits 

Toroidal Canonical Angular Momentum
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Transport Occurs When Orbits In Diagnostic Sensitive 
Region Become Stochastic 
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Transport Occurs When Orbits In Diagnostic Sensitive 
Region Become Stochastic 

•  Increase in total number of stochastic 
orbits in diagnostic region coincides 
with jump in measured transport.  
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Transport Occurs When Orbits In Diagnostic Sensitive 
Region Become Stochastic 

•  Increase in total number of stochastic 
orbits in diagnostic region coincides 
with jump in measured transport.  

 
•  Diagnostics like neutrons cover entire 

area of phase space, therefore include 
more stochasticity. 
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Stiff Transport Causes Bursts of Fast Ion Losses 

 
•  In theory, intermittent transport 

occurs when overlapping resonances 
cause rapid avalanches of global 
redistribution and losses. 

 
•  Current critical gradient models       

do not account for this mechanism. 

•  ITER must avoid concentrated alpha 
losses and excessive wall heating. 
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Critical Gradient Transport of Fast Ions Due to Multiple, 
Overlapping AEs Has Been Observed In DIII-D 

1.  Above threshold, fast-ion profiles are clamped and fusion 
performance is reduced.  

2.  AE-induced transport is a phase-space dependent quantity. 

-Transport threshold occurs when orbits become stochastic. 

-Transport can be varied by shifting beam deposition to move 
resonances to different portions of phase space.  

3.  Stiff transport causes intermittent losses.  
 

•  This work provides a basis for understanding how to avoid AE 
transport in advanced tokamak scenarios. 
-Some AEs can be tolerated before causing significant transport.  
-Measurements are being used to validate AE-induced transport 
models for ITER. 
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More on Implications for Predicting and 
Controlling AEs in ITER 
 R.E. Waltz (TH/P4-14)  
A Critical Gradient Model for Energetic Particle Transport from Alfvén Eigenmodes: 
GYRO Verification, DIII-D Validation, and ITER Projection 
 

G.J. Kramer (TH/P4-5)  
Improving Fast-Ion Confinement in High-Performance Discharges by Suppressing 
Alfvén Eigenmodes 
 

M.A. Van Zeeland (EX/P3-24)  
Electron Cyclotron Heating Modification of Alfvén Eigenmode Activity in DIII-D 

Image	credit:	Pace	et.	al.,Physics	Today	(2015)		
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Bonus Slides 
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•  Experiments guide model development:  

Above 
Threshold?
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 [M. Podestà, PPCF 56 (2014)]   
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Measured transport vs. peak 
classical beam density gradient 

Beam Density Profile 

•  Peak gradient from model is 
8.18x1018 m-4  ±7% 

•  Future work: implement 
predictive critical gradient model 


