Critical Gradient Behavior of Fast-Ion Transport from Alfvén Eigenmodes Guides Predictive Models for Burning Plasmas

Cami Collins¹

W. W. Heidbrink², G.J. Kramer³,
D. C. Pace¹, C. C. Petty¹, M. Podestà³,
M. A. Van Zeeland¹, R.B. White³,
& the DIII-D Team

¹General Atomics ²University of California, Irvine ³Princeton Plasma Physics Laboratory

26th IAEA Fusion Energy Conference Kyoto, Japan October 20, 2016

Critical Gradient Behavior of Alfvén Eigenmode (AE) Induced Fast-Ion Transport Has Been Observed in DIII-D

Key features of critical gradient phenomenon:

[Collins et al., PRL 116 (2016)]

Critical Gradient Behavior of Alfvén Eigenmode (AE) Induced Fast-Ion Transport Has Been Observed in DIII-D

Key features of critical gradient phenomenon:

[Collins et al., PRL 116 (2016)]

Critical Gradient Behavior of Alfvén Eigenmode (AE) Induced Fast-Ion Transport Has Been Observed in DIII-D

• Key features of critical gradient phenomenon:

• Recent experiments at DIII-D show that fast-ion transport becomes stiff when AEs cause fast-ion orbits to become stochastic.

Attractive Steady-State Tokamak Operation Requires Confined Energetic Particles

• AEs can cause transport that reduces:

- absorbed beam heating power
- current drive
- achievable β_N

AEs degrade fusion performance by 40% in DIII-D steady state scenarios

Attractive Steady-State Tokamak Operation Requires Confined Energetic Particles

- AEs can cause transport that reduces:
 - absorbed beam heating power
 - current drive
 - achievable $\beta_{\rm N}$
- AEs are driven by gradients in EP profiles & are predicted to be unstable in ITER
 - Important questions:
 - When is transport significant?
 - How can we effectively predict EP profiles, beam ion profiles, and losses to optimize scenarios?

AEs degrade fusion performance by 40% in DIII-D steady state scenarios

[Heidbrink et al., PPCF 56 (2014)] [Holcomb et al., Phys. Plasmas 22 (2015)] 6

- DIII-D critical gradient experiment & analysis technique.
- Critical gradient transport varies in phase-space.
- •Theoretical analysis indicates stochasticity sets threshold.

• DIII-D critical gradient experiment & analysis technique.

• Critical gradient transport varies in phase-space.

•Theoretical analysis indicates stochasticity sets threshold.

The Experiment: Use NBI Power to Manipulate AEs & Beam Modulation to Measure Fast-Ion Transport

 Control AE activity with NBI power & geometry during the current ramp

(reverse-shear, L-mode plasma)

Density Fluctuations 120 #159243 6.4 MW NBI (kHz) 80 log₁₀(P^{1/2}) 80 -3.6 60 -4.0 120 #159257 **3.7 MW NBI** -4.4 f (kHz) 100 -4.8 80 60 400 600 800 1000 Time (ms) amp. (∑∆T_e / T_e) **7.0 1.0 1.0 AE** amplitude t=500-900 ms **Tangential Beams** ■ ⊥ Beams * Mixed Beams 0.0 2 10 4 6 8 **Beam Power (MW)**

The Experiment: Use NBI Power to Manipulate AEs & Beam Modulation to Measure Fast-Ion Transport

 Control AE activity with NBI power & geometry during the current ramp

(reverse-shear, L-mode plasma)

The Experiment: Use NBI Power to Manipulate AEs & Beam Modulation to Measure Fast-Ion Transport

 Control AE activity with NBI power & geometry during the current ramp

(reverse-shear, L-mode plasma)

Density Fluctuations 120 #159243 6.4 MW NBI (kHz) 80 log₁₀(P^{1/2}) 80 -3.6 60 -4.0 120 #159257 **3.7 MW NBI** -4.4 f (kHz) 100 -4.8 80 60 400 600 800 1000 Time (ms) amp. (∑∆T_e / T_e) 700 (∑∆T_e / T_e) **AE** amplitude t=500-900 ms ▲ Tangential Beams ■ ⊥ Beams * Mixed Beams 0.0 2 10 6 8 **Beam Power (MW)**

The Experiment: Use NBI Power to Manipulate AEs & Beam Modulation to Measure Fast-Ion Transport

- Control AE activity with NBI power & geometry during the current ramp (reverse-shear, L-mode plasma)
- Measure transport by modulating the fast-ion pressure profile with off-axis neutral beam injection (150LT)

Density Fluctuations 120 #159243 6.4 MW NBI (kHz) 80 log₁₀(P^{1/2}) 80 -3.6 60 -4.0 120 #159257 3.7 MW NBI -4.4 f (kHz) 100 -4.8 80 60 800 1000 400 600 Time (ms) amp. (∑∆T_e / T_e) **7.0 1.0 AE** amplitude t=500-900 ms Tangential Beams ■ ⊥ Beams * Mixed Beams **0.0** 10 2 6 8 **Beam Power (MW)**

Stiff Transport Causes Clamped Equilibrium Density Profiles and Distortions In Modulated Signals

 Profile resilience has also been observed in off-axis beam injection experiments. [Heidbrink et al.,Nucl. Fusion 53 (2013)]

Stiff Transport Causes Clamped Equilibrium Density Profiles and Distortions In Modulated Signals

 Profile resilience has also been observed in off-axis beam injection experiments. [Heidbrink et al.,Nucl. Fusion 53 (2013)]

1. Modulate the fast-ion source with off-axis neutral beam injection (150LT) $S=S_0+\tilde{S}$

2. Measure fast-ion evolution:

 $n = n_0 + \tilde{n}$

- fast-ion D α (FIDA) spectroscopy
 - density profiles
- solid-state neutral particle analyzer (NPA)
 - -fast neutrals from charge-exchange
- neutron emission (mostly beam-plasma)
 proxy for volumetric fast-ion population

$$\nabla \cdot \tilde{\Gamma} = -\frac{\partial \tilde{n}}{\partial t} + \tilde{S} - \frac{\tilde{n}}{\tau}$$

- 3. Calculate \tilde{S} and τ , solve for $\nabla \cdot \tilde{\Gamma}$
- Use TRANSP/FIDASIM to calculate source from classical signal [Heidbrink et al., NF 2016]

$$\nabla \cdot \tilde{\Gamma} = -\frac{\partial \tilde{n}}{\partial t} + \tilde{S} - \frac{\tilde{n}}{\tau}$$

- 3. Calculate \tilde{S} and τ , solve for $\nabla \cdot \tilde{\Gamma}$
- Use TRANSP/FIDASIM to calculate source from classical signal [Heidbrink et al., NF 2016]

$$\nabla \cdot \tilde{\Gamma} = -\frac{\partial \tilde{n}}{\partial t} + \tilde{S} - \frac{\tilde{n}}{\tau}$$

3. Calculate \tilde{S} and τ , solve for $\nabla \cdot \tilde{\Gamma}$

• Use TRANSP/FIDASIM to calculate source from classical signal [Heidbrink et al., NF 2016]

$$\tilde{n} = \int \int \int \tilde{f}(\mathbf{E}, \mathbf{p}, \mathbf{x}) W(\mathbf{E}, \mathbf{p}, \mathbf{x}) d\mathbf{E} d\mathbf{p} d\mathbf{x}$$
Modulated
Diagnostic

distribution function

→ Flux is not a function of radius alone

Diagnostic sensitivity

 $\tilde{\Gamma} \neq -D\nabla \tilde{n} + V\tilde{n}$

• DIII-D critical gradient experiment & analysis technique.

• Critical gradient transport varies in phase-space.

•Theoretical analysis indicates stochasticity sets threshold.

- Diagnostics measure a portion of fast-ions
 - NPA measures narrow band of trapped fast-ions

- AEs are driven by bulk population of fast-ions
- Energy exchange occurs when orbits are in resonance with AE modes

Different Diagnostics Provide Comprehensive Survey of Fast-Ion Orbit Topology Space

Onset Threshold for Transport Differs Between Various Fast-ion Diagnostics

Threshold for Significant Transport Is Clearly **Beyond AE Linear Stability Threshold**

Varied Beam Geometry Used To Drive Different AE **Resonances By Changing Bulk Fast-Ion Distribution**

Threshold and Stiffness Change as Beam Deposition Shifts Resonances in Phase-Space

- For a given total beam power, tangential beam injection results in the strongest total AE amplitude.
- However, perpendicular beam injection drives modes that are more efficient at transporting the trapped particle population.

• DIII-D critical gradient experiment & analysis technique.

• Critical gradient transport varies in phase-space.

•Theoretical analysis indicates stochasticity sets threshold.

- Expect to measure transport at intersection of:
 - Diagnostic sensitive space
 Modulated beam orbits
 - AE resonance
- Theoretical analysis shows multiple, overlapping AEs cause stochastic orbits

NOVA AE Mode Amplitudes are Matched to Experiment

- The linear ideal MHD code NOVA is used to compute AE frequencies and structures for 159243 at t=790 ms (6.4 MW NBI).
- NOVA amplitudes are scaled to match experimental values based on ECE fluctuation measurements.

[Cheng, Chang, Phys. Fluids 29 (1986)]

[Van Zeeland, Kramer, Austin et al., PRL 97 (2006)] 33

Stochasticity is Calculated Using ORBIT

• ORBIT code determines which portions of fast-ion phase space have orbits that reside in islands or become stochastic due to AE modes.

[R. B. White, Com. Nonlin. Sci. Num. Sim. (2012)]

Stochasticity is Calculated Using ORBIT

• ORBIT code determines which portions of fast-ion phase space have orbits that reside in islands or become stochastic due to AE modes.

[R. B. White, Com. Nonlin. Sci. Num. Sim. (2012)]

Transport Occurs When Orbits In Diagnostic Sensitive Region Become Stochastic

Transport Occurs When Orbits In Diagnostic Sensitive Region Become Stochastic

 Increase in total number of stochastic orbits in diagnostic region coincides with jump in measured transport.

Transport Occurs When Orbits In Diagnostic Sensitive Region Become Stochastic

• Diagnostics like neutrons cover entire area of phase space, therefore include more stochasticity.

Stiff Transport Causes Bursts of Fast Ion Losses

- In theory, intermittent transport occurs when overlapping resonances cause rapid avalanches of global redistribution and losses.
- Current critical gradient models
 do not account for this mechanism.
- ITER must avoid concentrated alpha losses and excessive wall heating.

Critical Gradient Transport of Fast Ions Due to Multiple, Overlapping AEs Has Been Observed In DIII-D

- 1. Above threshold, fast-ion profiles are clamped and fusion performance is reduced.
- 2. AE-induced transport is a phase-space dependent quantity.
 - -Transport threshold occurs when orbits become stochastic.
 - -Transport can be varied by shifting beam deposition to move resonances to different portions of phase space.
- 3. Stiff transport causes intermittent losses.

 This work provides a basis for understanding how to avoid AE transport in advanced tokamak scenarios.
 Some AEs can be tolerated before causing significant transport.
 Measurements are being used to validate AE-induced transport models for ITER.

More on Implications for Predicting and Controlling AEs in ITER

R.E. Waltz (TH/P4-14)

A Critical Gradient Model for Energetic Particle Transport from Alfvén Eigenmodes: GYRO Verification, DIII-D Validation, and ITER Projection

G.J. Kramer (TH/P4-5)

Improving Fast-Ion Confinement in High-Performance Discharges by Suppressing Alfvén Eigenmodes

M.A. Van Zeeland (EX/P3-24)

Electron Cyclotron Heating Modification of Alfvén Eigenmode Activity in DIII-D

Bonus Slides

Goal: Use Critical Gradient In Reduced Models To Calculate EP Transport & Optimize Scenarios For Future Fusion Reactors

• Reduced 'critical gradient' models avoid detailed nonlinear calculations of saturated mode amplitudes.

- Experiments guide model development:
 - -When does transport become stiff?
 - -Is an energy-dependent transport calculation necessary?
 - -Does intermittency cause significant transport?

Peak Density Gradient of Kick Model Transported EP Density Profile Agrees with Inferred Value From Experiment

[M. Podestà, PPCF 56 (2014)]