Extension of Operational Regime in High-Temperature Plasmas and Effect of ECRH on Ion Thermal Transport in the LHD

H. Takahashi, K. Nagaoka, S. Murakami¹⁾, M. Osakabe, H. Nakano, K. Ida, T. I. Tsujimura, S. Kubo, T. Kobayashi, K. Tanaka, R. Seki, Y. Takeiri, M. Yokoyama, M. Nakata, M. Yoshinuma, I. Yamada, R. Yasuhara, T. Ido, A. Shimizu, H. Tsuchiya, M. Goto, T. Oishi, S. Morita, C. Suzuki, M. Emoto, K. Tsumori, K. Ikeda, M. Kisaki, T. Shimozuma, Y. Yoshimura, H. Igami, R. Makino, T. Seki, H. Kasahara, K. Saito, S. Kamio, T. Mutoh, O. Kaneko, T. Morisaki and the LHD experiment group

National Institute for Fusion Science, Toki 509-5292, Japan,

1) Department of Nuclear Engineering, Kyoto University, Kyoto 606-8501, Japan

Introduction

- \triangleright In the future reactor, the fusion reaction is expected to be sustained under the electron heating, where both T_i and T_e are high.
- \succ Thus the characterization of the thermal transport for the plasmas, of which $T_{\rm i}$ and $T_{\rm e}$ are simultaneously high, is necessary.
- ➤ In the LHD, the high temperature regime was decoupled because each condition was obtained in different heating condition.
- ▶ In recent years, an integration of high $T_{\rm i}$ and high $T_{\rm e}$ with the simultaneous formation of an ion ITB and an electron ITB has been successfully achieved in the LHD by the combination of NBI and ECRH.
- ➤ In the presentation, we show the
 - (1) Characteristics of plasma with simultaneous high $T_{\rm i}$ and high $T_{\rm e}$,
 - (2) Effect of the ECRH on the ion thermal transport.

High T_i : i-ITB, NBI, $E_r < 0$

High T_e : e-ITB, ECRH, $E_r > 0$

Characteristics of plasma with simultaneous high T_i and high T_e

Simultaneous achievement of high T_i and high T_e

- \blacktriangleright In recent years, an integration of high T_i and high T_e has been tried on the LHD by NBI and ECRH mix.
- ➤ Although the i-ITB width became narrow by ECRH, the i-ITB maintained and e-ITB was formed
 - -> Simultaneous achievement of ITBs.
- \triangleright Operational regime in simultaneous high T_i and high T_e has been successfully extended.

Comparison of the temperature gradient profiles

Ion ITB plasma (NBI alone)

 \triangleright The $dT_i/dr_{\rm eff}$ increased not only in the core but also in the edge.

Ion and Electron ITB (ECRH superposition on the NBI plasma)

- > Ion-ITB structure maintained (slightly degraded).
- \succ The dT_i/dr_{eff} degraded around the center and further improved in the edge.
- \triangleright The dT_e/dr_{eff} greatly increased in the core due to the e-ITB.
- > The ITB position is different between ion and electron.

$T_{\rm e}/T_{\rm i}$ dependence of scale length of grad T

- $\succ T_{\rm e}/T_{\rm i}$ rapidly increases in low $n_{\rm e}$ regime due to the difference of thermal transport characteristics for ion and electron.
- \triangleright Both R/L_{T_i} and R/L_{T_e} were sensitive to T_e/T_i but the dependence was opposite.

Ion: R/L_T improved in lower T_e/T_i ,

Electron: R/L_T improved in higher T_e/T_i .

> The control and the optimization of $T_{\rm e}/T_{\rm i}$ is important to obtain the best performance of combined ITBs.

Effect of ECRH on the ion thermal confinement

Change in core and edge grad T

- \triangleright The $dT_{\rm e}/dr$ increased both core and edge.
- ➤ Opposite dependence of the ion thermal confinement on the "on-axis" ECRH power between core and edge,
 - -> Degraded at the "core" and improved at the "edge".
- ➤ This is different phenomenon from a so-called transition because the thermal confinement monotonically changed with ECRH power, not non-linear.
- \triangleright Not only W_e but also W_i increased due to the formation of the pedestal-like structure in the T_i profile.

On-axis ECRH superposition

Lower $n_{\rm e}$ case (1x10¹⁹ m⁻³)

Electron temperature

➤ T_e and the gradients increased in whole region, especially in the core due to the ITB.

lon temperature

- In the central region, T_e/T_i exceeded 1, then both T_i and its gradient degraded, resulting in the largely flattened T_i profile.
- \succ The dT_i/dr increased in the edge, leading to the T_i increase in wide region except for the center.
 - -> Seesaw like mechanism.

Higher n_e case (1.4x10¹⁹ m⁻³)

- ightharpoonup Although the dT_i/dr around the center degraded, T_i itself was not decreased even T_e/T_i exceeded 1 due to
 - (1) the improvement of peripheral T_i gradient
 - (2) the i-ITB maintained in more inward side compared with lower $n_{\rm e}$ by decrease of the flattening area.
- Core T_i can be increased by on-axis ECRH in the situation:
 Improvement of edge T_i > Degradation of core T_i
- This is possibly realized in high n_e plasmas and is attractive feature for a high T_i scenario for high n_e plasmas under electron heating dominant like DEMO.

Response of ion heat transport on ECRH

- $> R/L_{T}$ degraded in 56% (9 -> 4) at the core but improved in 50% (28 -> 42) at the edge.
- $\succ \chi_i$ was small when the T_e/T_i was small both at the core and the edge even the dependence on P_{ECRH} was opposite,

Central region: $T_{\rm e}$ increased by ECRH

-> T_e/T_i increased -> transport degraded

Edge region: T_i increased by ECRH

-> Accordingly T_e/T_i decreased

(<- Why T_i increased by ECRH?)

Spatiotemporal structure of fluctuation

- \triangleright The structure of the $n_{\rm e}$ fluctuation at the edge was measured using mw-reflectometry.
- The radial structure was segmentalized by ECRH superposition.
 - -> The correlation length of the fluctuation decreased.
- ➤ By increase of ECRH power, the spatiotemporal coherence decreased due to the change of the correlation length and the lifetime.

Change in fluctuation amplitude

- \triangleright PCI data showed the decrease of $n_{\rm e}$ fluctuation with low frequency (< 200 kHz).
- The rotation in ion-dia. direction increased.
- > The change in the fluctuation amplitude coincidently correlated with the change in χ_i .

Region	Fluctuation	\mathcal{X}_{i}
$r_{\rm eff}/a_{99} < 0.5$	Increased	Degraded
$r_{\rm eff}/a_{99} > 0.5$	Decreased	Improved

Summary

Integration of high- T_i and high T_e

 \succ An extension of high T_i and high T_e has been achieved with the establishment of the i-ITB and e-ITB simultaneously by NBI and ECRH mix.

Effect of ECRH on ion thermal confinement

- ➤ Ion thermal confinement was found to be improved at the edge by "on-axis" ECRH even it degraded in plasma central region.
- \triangleright Core T_i can be increased by on-axis ECRH in high n_e plasmas. The feature is attractive for a high T_i scenario with high n_e under electron heating dominant such as DEMO.
- > The fluctuation structure at the edge was segmentalized and the amplitude decreased.

Future prospect

- ➤ It has not been clarified what agent modified the fluctuation, and improved the edge ion thermal confinement during "on-axis" ECRH. The data accumulation is necessary.
 - Is the central ion thermal confinement improved or not by "edge" ECRH?
 - Fluctuation measurement at the plasma center (HIBP, etc...).

Radial electric field in ITB plasmas

E_r in core was measured using HIBP,

Plasma	Heating	Core E _r
L mode	NBI	~0
i ITB	NBI	Negative
e- & i-ITB	NBI + ECRH	Positive

- \triangleright Ion thermal transport was improved both in the presence of positive and negative E_r .
- \triangleright The effect on the ion thermal transport due to the difference of the E_r polarity has not been clarified.

