Validation of Theoretical Models of Intrinsic Torque in DIII-D and Projection to ITER by Dimensionless Scaling

by

B.A. Grierson¹, C. Chrystal², W.X. Wang¹, J.A. Boedo³, J.S. deGrassie², W.M. Solomon², G.M. Staebler², D.J. Battaglia¹, T. Tala^{4,} A. Salmi⁴ S-P. Pehkonen⁴ J. Ferreira⁵, C. Giroud⁶ and JET Contributors

¹PPPL, ²GA, ³UCSD, ⁴VTT, ⁵IST, ⁶CCFE

Presented at the 26th IAEA Fusion Energy Conference

Kyoto, Japan

October 17-22, 2016

Experiments on DIII-D have Advanced the Predictive Capability for Intrinsic Rotation in ITER

- **Toroidal rotation in ITER is** expected to be strongly influenced by intrinsic sources
- **Empirical dimensionless** scalings provide extrapolation from multimachine databases
- **First-principles based** predictions require momentum diffusion, pinch and residual fluxes plus boundary condition

Prediction of Toroidal Rotation Required to Assess Stability, Transport, ELM Suppression for ITER

- Can we predict overall angular momentum?
- Can we predict the core gradients and structure?
- What is the role of the boundary condition?
- Overall rotation for MHD stability, W transport
- Core rotation gradients for E_r shear and confinement improvement
- Rotation and E_r in the pedestal for RMP ELM suppression¹ and access to QH-mode

3

Outline

• Dimensionless scaling of intrinsic torque

• Testing physics based models of core intrinsic rotation profile

• Dependence of Edge Flow on Geometry

Joint Experiment¹ with JET and ASDEX-U Tests ϱ^* Scaling of Intrinsic Torque

- e^{*} for DIII-D, JET, ITER
 0.01, 0.004, 0.002
 (÷2.5, ÷2.0)
- Dimensionless parameter scan used to match conditions²

³W.M. Solomon, *Phys. Plasmas* **17** 056108 (2010).

Joint Experiment¹ with JET and ASDEX-U Tests ϱ^* Scaling of Intrinsic Torque

- e^{*} for DIII-D, JET, ITER

 0.01, 0.004, 0.002

 (÷2.5, ÷2.0)
- Dimensionless parameter scan used to match conditions²
- Torque perturbation method used to extract intrinsic torque³

Dimensionless Match Obtained on DIII-D for Factor of 1.4 Variation in @*

- ELMy H-mode conditions

 - High e^{*} 1.4 T (scaled)

• I_p scaled with B_T, n~B_T^{4/3}, T~B_T^{2/3} same β_N , q₉₅

• Good confinement H_{98(y,2)} ~ 1.0

Intrinsic Torque Dominantly in Outer Region and Increases When Reducing *e**

- Higher torque at low e^{*} projects favorably to ITER
- Shape consistent with previous studies of intrinsic torque¹

0.8

0.2

0.0

0.0

رشا 0.4 (nm 9.0 ero Rotation (161

0.2

0.4

ρ

1.0 ₈

0.8

0.6

Measurement cross-validated with zero rotation technique²

¹W.M. Solomon, *Nucl. Fusion* **51** 073010 (2011) ²W.M. Solomon, *Nucl. Fusion* **49** 085005 (2009).

Projecting the DIII-D Intrinsic Torque to ITER Yields Approximately 45 Nm of Intrinsic Torque — More than NBI Torque

- ITER has 33 Nm of available neutral beam torque
- Intrinsic torque is near available torque from NBI
- Projection to ITER scaled using T_i to dimensionalize
- Predicted¹ toroidal rotation from τ_{NBI}+τ_{int}
 ⟨Ω⟩≈ 12 kRad/s
 - 1% of Alfven speed, marginal for RWM stability

$$\tau_{ITER} = \frac{\tau_{DIII-D}}{T_{i,DIII-D}} \left(\frac{\rho_{ITER}^*}{\rho_{DIII-D}^*}\right)^{-1.5} T_{i,ITER}$$

¹C. Chrystal *Phys. Plasmas* (submitted)

Multi-machine Intrinsic Torque Scaling Confirms DIII-D Results and Normalization

- Similar experiments executed on JET and ASDEX-U¹
- Scaling with ion temperature best organizes data set^{1,2}
- Projection to ITER with multiple parameters in progress²

JROfusion

We Project Relatively Low Toroidal Rotation

- → Finite performance improvement for ITER²
- → Details of the rotation profile matter

¹T. Tala (EPS 2016) ²C. Chrystal (APS 2016)

Outline

• Dimensionless scaling of intrinsic torque

 Testing physics based models of core intrinsic rotation profile

• Dependence of Edge Flow on Geometry

Electron Heating Causes a Rotation Reversal and Global NL GTS Simulation Captures both Shape and Magnitude

- Rotation reversal occurs because of turbulence residual stress
- Validation of residual stress required to predict ITER rotation
- Simulations indicate low-k ITG with zonal flow E×B and global effects responsible¹

- Density $\langle n_e \rangle$ $2.5\text{-}3.0 \times 10^{19} m^{\text{-}3} \text{ and no}$ NBI promotes $T_e \text{-}T_i$

 Direct electron heating raises both temperatures

- Density $\langle n_e \rangle$ 2.5-3.0×10¹⁹m⁻³ and no NBI promotes $T_e \sim T_i$

 Direct electron heating raises both temperatures

- Density $\langle n_e \rangle$ 2.5-3.0×10¹⁹m⁻³ and no NBI promotes $T_e \sim T_i$

 Direct electron heating raises both temperatures

- Density $\langle n_e \rangle$ 2.5-3.0×10¹⁹m⁻³ and no NBI promotes $T_e \sim T_i$

 Direct electron heating raises both temperatures

- On DIII-D direct measurements of the mainion (D) toroidal flow available¹
 - Other machines use impurities
- Deuterium carries energy, momentum fluxes
- Location where rotation gradient changes indicates -10 non-diffusive flux
 - Not necessarily the sign (+/-) of rotation velocity

- On DIII-D direct measurements of the mainion (D) toroidal flow available¹
 - Other machines use impurities
- Deuterium carries energy, momentum fluxes
- Location where rotation gradient changes indicates -10 non-diffusive flux
 - Not necessarily the sign (+/-) of rotation velocity

- On DIII-D direct measurements of the mainion (D) toroidal flow available¹
 - Other machines use impurities
- Deuterium carries energy, momentum fluxes
- Location where rotation gradient changes indicates -10 non-diffusive flux
 - Not necessarily the sign (+/-) of rotation velocity

- On DIII-D direct measurements of the mainion (D) toroidal flow available¹
 - Other machines use impurities
- Deuterium carries energy, momentum fluxes
- Location where rotation gradient changes indicates -10 non-diffusive flux
 - Not necessarily the sign (+/-) of rotation velocity

Boundary Effect

At Onset of Power Degradation Plasma Becomes Linearly Unstable to ITG at Radius where Rotation Gradient Increases

Direct electron heating raises both T_e, T_i with clear increase of a/L_{Ti} at mid-radius

159396.01280

120306 00005

 TGLF¹ indicates excitation of ITG² turbulence

1.4

1.2

1.0

0.8

¹G.M. Staebler et. al. Phys. Plasmas **12** (2005) ²C.L. Retting, et. al. Phys. Plasmas **8** (2001) ²¹

At Onset of Power Degradation Plasma Becomes Linearly Unstable to ITG at Radius where Rotation Gradient Increases

Direct electron heating raises both T_e, T_i with clear increase of a/L_{Ti} at mid-radius

1.4

1.2

1.0

1.0

0.5

159396.01280

159396 02225

Frequency $\dot{\omega}(a/c)$

electron direction

159396.01280

59396 0222

 TGLF¹ indicates excitation of ITG² turbulence

Global Nonlinear Gyrokinetic Simulation Shows Rotation Profile is Balance of Residual Stress and Diffusion

- Momentum flux
 decomposed by series of simulations¹
 - Three simulations produce $\Pi^{\text{resid.}},\,V_{\text{p}},\,\chi_{\varphi}$
- Residual stress balanced by momentum diffusion²
 - Momentum pinch small
- Spatial integration of $\Pi_{\varphi} \equiv 0 + B.C.$ predicts intrinsic rotation profile

¹W.X. Wang Phys. Plasmas **13** (2006) ²W.X. Wang APS (2016)

Prediction of Intrinsic Rotation Profile from Electrostatic Turbulence Matches Both Shape and Magnitude of Experiment

- Prandtl number used to relate energy and momentum flux
 - Rotation profile and χ_{ϕ} is not available in ab. *initio*. prediction
 - Experiment and theory $Pr = \chi_{\phi}/\chi_i \approx 0.7$
- Qualitative shape and quantitative magnitude in agreement with experiment

Global Nonlinear GTS Simulation can Predict Intrinsic Rotation Profile from Electrostatic Fluctuation-Induced Residual Stress

Outline

• Dimensionless scaling of intrinsic torque

• Testing physics based models of core intrinsic rotation profile

• Dependence of Edge Flow on Geometry

Edge Velocity "Layer" Exhibits Novel Dependece on Boundary Shape - Maximized for ITER Configuration

- Edge velocity w/pinch possible source of intrinsic co-current angular momentum
- Inverting plasma shape test orbit-loss mechanism
- Find V_{||} always co-Ip and maximized for LSN, favorable ∇B^1

- Same as ITER configuration

Edge Velocity "Layer" Exhibits Novel Dependece on Boundary Shape - Maximized for ITER Configuration

- Edge velocity w/pinch possible source of intrinsic co-current angular momentum
- Inverting plasma shape test orbit-loss mechanism
- Find $V_{||}$ always co-lp and maximized for LSN, favorable ∇B^1
 - Same as ITER configuration

Edge Velocity "Layer" Exhibits Novel Dependece on Boundary Shape - Maximized for ITER Configuration

- Edge velocity w/pinch possible source of intrinsic co-current angular momentum
- Inverting plasma shape test orbit-loss mechanism
- Find V_{||} always co-lp and maximized for LSN, favorable ∇B^1
 - Same as ITER configuration
- Core rotation correlates with edge rotation layer^{1,2}

¹Boedo *et. al.* Phys. Plasmas accepted (2016) ²S.R.Haksey APS-DPP (2016)

Rotation Experiments on DIII-D Are Producing Scalings and First-principles-based Validation of Momentum Transport for ITER

- Scaling of increased intrinsic torque towards ITER e^{*} observed on DIII-D and projects twice as much torque from NBI only
- Successful capture of hollow intrinsic rotation demonstrates ability to predict rotation profile self-organization
- Edge rotation where intrinsic torque is maximized correlates with core rotation

Dfusion

Bonus Slides

Predicted Intrinsic Rotation Improves ITER Performance via Direct E×B and Indirect Multi-Channel Effect (Density Peaking)

C. Chrystal APS-DPP (2016) Invited Talk

How Does an Intrinsic Rotation Gradient Appear?

- Need a mechanism to break the toroidal symmetry
 - mean E×B shear, ZF E×B shear, up/down asymmetry, profile and turbulence intensity variation
- Intrinsic torque generated by residual stress $\Pi_{\text{resid.}}$
 - Low-k turbulence in the presence of symmetry breaking
- Both diffusion and pinch can balance residual stress
 - here Ω adjusts with local rotation gradient creating $\Pi_{\text{diff.}}$ until total $\Pi = 0$

Balance of Residual Stress and Momentum Diffusion Responsible for Steady-State Experimental Rotation Profile

- Qualitative balance residual stress and momentum diffusion producing a rotation "hollowing" is realized in GTS simulation
- But quantitative, firstprinciples prediction of rotation profile requires additional information
 - Cannot use experimental rotation profile to derive diffusive flux, needs Pr

Residual stress and momentum diffusion balance

