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Significance of LHD in the world fusion research

e High-performance steady-state plasmas is required to realize fusion reactor

e LHD is based on Japan-originated heliotron concept, and the world-largest
class of superconducting fusion device

¢ L HD has demonstrated its inherent advantage for steady-state operation

Duration: 47min.39sec
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104 LI L] rrrirIi I| 1 ] I 1 rrri | =
E LHD -
(n_~1.2x10" m™) i
@ - - ¥ ultra-long ]
= (~1x10" m™)
2 1000 [ LHD (ECH only) -
= E (n ~ 1x10™ m?) LHD(17th ~ 18th) =
c - s -
I S o :
o ® ]
3 EAST \
8 100 & hi - | N N
§, 3 higher performsnc_? long Tore Supra
D—of B (1 ~4x10 " m ) (2__4)(1019 m-3) ]
- JT-60 @
- JET @ -
10 1 1 1 119l 1 11 11l
0.1 1 10

Heating power PRF (MW)

2

=
@

4 GJ
3GJ

2GJ

J1GJ

JosG.

towards steady-state
high-performance regime

T T T T T T T T T T[T~ T T T~TTTI—TTTT

Reactor

__ 10 ITER
%) /
% 10° Tokamak :
~ ! Helical
e 107 ~
?2 102F ToreSupra®®” - LHD (2013)
X | LHD
w -3 o) (]
e 10 S 5 5 o g o
|‘~O B £ o) o o) g
< 10* & £ i £
10° TRIAM-1M (5 hours)

0.1 10 1000 10° 10
Plasma duration time (s) 2



Progress towards high-performance plasmas

® Steady increase of plasma parameters in recent years

® Coming deuterium experiment should further extend the parameters
towards reactor-relevant regime, in which advanced research can be
performed for establishing firm basis for steady-state helical reactor

Key physics

lon ITB 10 keV
: — 19 m-3
Ti S G (= LXATE00S) Impurity hole (n, = 2x10¥m3)
20 keV (2x108m3) 10 keV
Te 10 keV (1.6x1019m-?) SiSelie/u Ul (2x1019m3)
. Super dense 4x10%0m-3
21m-3 =
Density 1.2x10%tm™ (T, = 0.25 keV) core (T.= 1.3 keV)
B 51% (B;:=0.425T) MHD in current- 5%
41% (1T free plasmas (Br=1-2T)
54min. 28sec
Steady-state (0.5MW, 1keV, 4x1018m-3) Dynamic wall 1 hour
operation 47min. 39sec. retention (3 MW)

(1.2MW, 2keV, 1x10°m-3)
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Introduction

Large Helical Device (LHD), the largest helical device

LHD is optimized heliotron with simply and continuously wound helical coils.

The superconducting LHD has been
operated since 1998 without any
severe cryogenic troubles.

FIP/3-4Rc, Takahata

Specification

e Helical mode numbers: l/m=2/10
e All superconducting coil system
e Plasma major radius: 3.42-4.1 m
_ e Plasma minor radius: 0.63m
Heating Systems e Plasma volume: 30 m3
e negative-NBI x 3 e Toroidal field strength: 3T
H-inj. 180 keV, 16MW e 20 RMP coils

e positive-NBI x 2

H-inj. 40-50 keV, 12MW
e ECH (77 GHz x 3, 154 GHz x 2, 82.7 GHz, 84 GHz), 5.4MW (0.6 MW CW)
e ICH (20-100 MHz) x6 3 MW
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Extension of temperature regime

Plasma control and physics findings extended temperature regime

PPC/1-1, Takahashi (Wed)
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* Ti had been extended to above 8
keV (ion ITB) (FEC2014, Nagaoka)

« |ICH/ECH wall conditioning is
effective to reduce recycling,
leading to enhancement of NB
penetration to the core region.

EX/P8-2, Tsujimura

» Feedback ECH optimization for
fine-tuned ECH is applied onto
high-Ti plasmas
- Extended temperature regime to
high Ti and Te, simultaneously
reaching around 6 and 8 keV,
respectively.



Study on Impurity hole has progressed

Density profile: Carbon and helium ions are hollow, while bulk ion is peaked
Radial density profiles of bulk and impurity ions are simultaneously measured by CXS
|da et al., to be submitted to NF (2016).

A. Perek, K.

peaking factor
(quasi steady-sate)

Te, i [keV]
04 NGAMDOD N
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TiI ~ 5-6 keV
Te~ 3-4 keV

H: peaked
C, He: hollow



Strategy of high-beta plasma production

High beta has been realized with two scenarios in previous experiments

Standard scenario (broad P-profile)

- Low A, configuration to increase heating
efficiency, and to optimize transport, MHD

- <f>of 5.1 % was obtained at low-Bt

SDC (Super Dense Core) scenario

(peaked P-profile)
- Peaked P profile by multi-pellet injections
- High density (> 102° m3) <

[T—

Towards more reactor-relevant research,
high beta plasmas in low-collisional
regime are necessary

[—

By (

Realization of high temperature and high betg

plasma in inward shifted configuration

Standard
Scenario

SDC
Scenario

Ry (M)

tof T

3.6 3.7 38 39 40 41

4.2



High Atrial in low collisional regime

High beta operation has been extended to low collisional regime

EX/4-4, Sakakibara (Wed) * ' J o
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Impurity transport in core region

Strong suppression of accumulation behavior is observed in
Impurity accumulation window, during high power heating

3 (keV)

T LCF

0.6

0.5

0.4

0.3

0.2

0.1

0.0

R=3.6m

E shielding -
r o

e -
Os’ strong suppression of
() impurity accumulation

impurity shielding
in the ergodic layer

2 3 4 5 6 7
nELch {1U1Bm'3)

EX/P8-4, Nakamura

Impurity accumulation window exists with
boundaries determined by
1) E,

2) edge stochastic layer
3) NBI (power, torgue), etc. I
l e experimentally confirmed

e newly found
e including impurity hole in high T regime

TH/P2-3, Nunami
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Impact of NBl torque input on impurity transport

10

# 101365

Co-injection

t=6.04s

Ctr-injection

P
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It is suggested that NBI torque plays an
Important role in exhausting C impurity

When NBI torque input direction is switched from
Co- to ctr-injection,

® little change in T, and T, is observed

® drastic change of n. profile is observed in
response to the rotation parameters (V, and u,)

® n. profile is hollow in the co-injection
® n. profile is observed to be peaked in the ctr-
Injection

On the other hand, it is also observed that the
carbon density profile becomes hollow with
increasing in the Ti-gradient.

EX/P8-4, Nakamura
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@ Impurity transport in stochastic region

o 3m-VUV
— EMC3-EIRENE
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240 i 1ooo
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Connection length Lenl

noplot<12.5m M <24,

Impurity flow direction in stochastic

5m <49.0m

" ]
.....

H<1225m ! <2450 mE <490.0 m

region is determined by the balance

1] ) )
b)-  between friction and thermal forces

Agreement between experimental and
numerical (EMC3-EIRENE) results was
confirmed.

J—Obs % atlon
-3I Range™\

\ 4000
\(mm)

friction force

ﬁ '
core stochastic region diver
h tor

LCFS thermal force

]

5000

O Top edge

6| L_® Bottom edge T

<4 EMC3-EIRENE model (expectation)

‘ C-flow observed by VUV spectroscopy

N\

e Downstream flow towards the divertor

-600 PR N S NI 4
4 4 0 4 8
<-Inboard vg (km/s) Outboard ->

plate was experimentally observed.

— ¢ Impurity outboard flow is enhanced

n, (10°cm®) as n, increases.

EX/7-2, Oishi (Fri) [ 13




He

Particle balance in steady-state plasma
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Wall does not saturate during 48 min.
discharge due to deposition layers

Dvnamic change of He retention
Three different retention phases:

1. quite high wall pumping
by implantation in divertor plates
2. Inventory declination
by out gassing due to increased
surface temperature of divertor tiles
3. continuous wall pumping
by deposition layer on the first wall

can be explained by the global particle
balance and plasma-exposed sample
analyses.

Deposition layers continuously grows
during the long-pulse discharge.

EX/P8-3, Motojima | 14




@ LHD as the advanced academic platform

Impact of high-T, laboratory
plasma on fundamental

Hysteresis in

transport relation

OV/P1-8: K.Itoh
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K.lda et al., Nature
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EX/P8-14, D. Kato

Abrupt excitation of a linearly stable
mode: subcritical instability

T. Ido, et al., PRL116 (2016) 015002 .
M. Lesur, et al., PRL 116 (2016) 015003.

TH/P4-11, Wang
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3. Deuterium experiment
- Objects
- Schedule
- Hardware improvement (negative-ion based NBI)
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e

Objectives of LHD deuterium experiment

. High-performance plasmas through confinement

Improvement
v" Scientific research in more reactor-relevant conditions
v' Full of research opportunities

. Clarification of the isotope effect on confinement

v Long-standing mystery in world fusion research
v" Needs to be understood towards burning plasma

. Demonstration of the confinement capabillity of

energetic ions Iin helical systems
v Perspectives towards helical reactor

Isotope effect on PWI
v Global particle balance for hydrogen isotopes

17



e

Schedule for LHD deuterium experiment

- Concluded the agreements for LHD deuterium experiment with local governments in 2013
- Deuterium experiment will start in March 2017 and will last 9 years

2013 2016

Preparation for D-experiment

Hydrogen Experiments
A 4

Agreements
for D-exp.

Legal License

Upgrade for Heating S
(NBI, ECH, ICRF)

Upgrade for Diagnostics S
(Neutron diagnostics, et

Installation of Safety Equip
(Tritium removal system,

Remodeling of Building and F

2017 2025
Deuterium Experiments (9 years)

Deuterium Experiments

Closed Helical Divertor with
Pumping System

NBI: 18MW (60-80keV, 2sec)
14MW (180keV, 2sec)

ECH: 6MW-3sec, IMW-CW
(77GHz & 154GHz)

ICRF: 6MW-5sec, 2-3MW-CW

Neutron Diagnostics

High-energy Particle Measurement
3-Dimensional Measurement
High-Accuracy Measurement
Divertor Diagnostics

Steady-State Data Acquisition

Y
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PWI Laboratory

Target
in D-Exp.

T, = 10keV
at 2x1019 m-3

<B>~ 5%
at B=1T

nTt
>1x1020
m-3keV s

3MW Heating
for 1 hour
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World-leading negative-ion-based NBIs

®Negative-NBlIs reliably inject 15MW of 180keV-
H-beams into LHD plasma.

® For D-beam injection, upgrade of the negative
lon source performance with understanding of
the source physics is being carried out.

® Such engineering and physics research should
contribute to ITER-NBI development.

Negative-ion flow near PG
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* Negative-ion rich
plasma (n ->>n,) is
produced near PG.

* Negative-ion flow in the
source plasma is
evaluated for the first
time.
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@Helical reactor (FFHR-d1) design and R&Dﬁ%

1. Construction/maintenance scenario 2. Development of new materials
T PR T T T e | Low activation vanadium alloys
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2 . ress
3. Integrated blanket system study =5 mefan
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5 4 e —FLiNaKIoop LU

4. Divertor mock-up and heat load tests
| B ‘ 1% d High heat
SEONSER M - By flux test
= SRl Wgme = facility

L 3

Oroshhi-2: Operational Recovery Of
Separated Hydrogen and Heat Inquiry-2
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Summary

® LHD has progressed as a large-scale superconducting
device since 1998, without any severe cryogenic troubles

® Demonstration of steady-state operation as inherent
advantage of helical systems

® |Improvement of plasma performance based on extended
experimental capabilities and physics findings

® Further plasma performance improvement is envisaged Iin
the coming deuterium experiment, to provide firm basis for
helical reactor design

® LHD as the academic platform, to provide opportunities for
challenging and cutting-edge research
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